ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentially Private False Discovery Rate Control

366   0   0.0 ( 0 )
 نشر من قبل Weijie J. Su
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms of the $p$-values to ensure differential privacy and to select an approximately smallest $p$-value serving as a promising candidate at each iteration; the selected $p$-values are further supplied to the BHq and our private procedure releases only the rejected ones. Moreover, we develop a new technique that is based on a backward submartingale for proving FDR control of a broad class of multiple testing procedures, including our private procedure, and both the BHq step-up and step-down procedures. As a novel aspect, the proof works for arbitrary dependence between the true null and false null test statistics, while FDR control is maintained up to a small multiplicative factor.



قيم البحث

اقرأ أيضاً

Multiple hypothesis testing, a situation when we wish to consider many hypotheses, is a core problem in statistical inference that arises in almost every scientific field. In this setting, controlling the false discovery rate (FDR), which is the expe cted proportion of type I error, is an important challenge for making meaningful inferences. In this paper, we consider the problem of controlling FDR in an online manner. Concretely, we consider an ordered, possibly infinite, sequence of hypotheses, arriving one at each timestep, and for each hypothesis we observe a p-value along with a set of features specific to that hypothesis. The decision whether or not to reject the current hypothesis must be made immediately at each timestep, before the next hypothesis is observed. The model of multi-dimensional feature set provides a very general way of leveraging the auxiliary information in the data which helps in maximizing the number of discoveries. We propose a new class of powerful online testing procedures, where the rejections thresholds (significance levels) are learnt sequentially by incorporating contextual information and previous results. We prove that any rule in this class controls online FDR under some standard assumptions. We then focus on a subclass of these procedures, based on weighting significance levels, to derive a practical algorithm that learns a parametric weight function in an online fashion to gain more discoveries. We also theoretically prove, in a stylized setting, that our proposed procedures would lead to an increase in the achieved statistical power over a popular online testing procedure proposed by Javanmard & Montanari (2018). Finally, we demonstrate the favorable performance of our procedure, by comparing it to state-of-the-art online multiple testing procedures, on both synthetic data and real data generated from different applications.
We are considered with the false discovery rate (FDR) of the linear step-up test $varphi^{LSU}$ considered by Benjamini and Hochberg (1995). It is well known that $varphi^{LSU}$ controls the FDR at level $m_0 q / m$ if the joint distribution of $p$-v alues is multivariate totally positive of order 2. In this, $m$ denotes the total number of hypotheses, $m_0$ the number of true null hypotheses, and $q$ the nominal FDR level. Under the assumption of an Archimedean $p$-value copula with completely monotone generator, we derive a sharper upper bound for the FDR of $varphi^{LSU}$ as well as a non-trivial lower bound. Application of the sharper upper bound to parametric subclasses of Archimedean $p$-value copulae allows us to increase the power of $varphi^{LSU}$ by pre-estimating the copula parameter and adjusting $q$. Based on the lower bound, a sufficient condition is obtained under which the FDR of $varphi^{LSU}$ is exactly equal to $m_0 q / m$, as in the case of stochastically independent $p$-values. Finally, we deal with high-dimensional multiple test problems with exchangeable test statistics by drawing a connection between infinite sequences of exchangeable $p$-values and Archimedean copulae with completely monotone generators. Our theoretical results are applied to important copula families, including Clayton copulae and Gumbel copulae.
349 - Lu Zhang , Junwei Lu 2021
Variable selection on the large-scale networks has been extensively studied in the literature. While most of the existing methods are limited to the local functionals especially the graph edges, this paper focuses on selecting the discrete hub struct ures of the networks. Specifically, we propose an inferential method, called StarTrek filter, to select the hub nodes with degrees larger than a certain thresholding level in the high dimensional graphical models and control the false discovery rate (FDR). Discovering hub nodes in the networks is challenging: there is no straightforward statistic for testing the degree of a node due to the combinatorial structures; complicated dependence in the multiple testing problem is hard to characterize and control. In methodology, the StarTrek filter overcomes this by constructing p-values based on the maximum test statistics via the Gaussian multiplier bootstrap. In theory, we show that the StarTrek filter can control the FDR by providing accurate bounds on the approximation errors of the quantile estimation and addressing the dependence structures among the maximal statistics. To this end, we establish novel Cramer-type comparison bounds for the high dimensional Gaussian random vectors. Comparing to the Gaussian comparison bound via the Kolmogorov distance established by citet{chernozhukov2014anti}, our Cramer-type comparison bounds establish the relative difference between the distribution functions of two high dimensional Gaussian random vectors. We illustrate the validity of the StarTrek filter in a series of numerical experiments and apply it to the genotype-tissue expression dataset to discover central regulator genes.
110 - Lilun Du , Xu Guo , Wenguang Sun 2020
We develop a new class of distribution--free multiple testing rules for false discovery rate (FDR) control under general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence struct ure via sample splitting, data screening and information pooling. The proposed SDA filter first constructs a sequence of ranking statistics that fulfill global symmetry properties, and then chooses a data--driven threshold along the ranking to control the FDR. The SDA filter substantially outperforms the knockoff method in power under moderate to strong dependence, and is more robust than existing methods based on asymptotic $p$-values. We first develop finite--sample theory to provide an upper bound for the actual FDR under general dependence, and then establish the asymptotic validity of SDA for both the FDR and false discovery proportion (FDP) control under mild regularity conditions. The procedure is implemented in the R package texttt{SDA}. Numerical results confirm the effectiveness and robustness of SDA in FDR control and show that it achieves substantial power gain over existing methods in many settings.
We propose a new method, semi-penalized inference with direct false discovery rate control (SPIDR), for variable selection and confidence interval construction in high-dimensional linear regression. SPIDR first uses a semi-penalized approach to const ructing estimators of the regression coefficients. We show that the SPIDR estimator is ideal in the sense that it equals an ideal least squares estimator with high probability under a sparsity and other suitable conditions. Consequently, the SPIDR estimator is asymptotically normal. Based on this distributional result, SPIDR determines the selection rule by directly controlling false discovery rate. This provides an explicit assessment of the selection error. This also naturally leads to confidence intervals for the selected coefficients with a proper confidence statement. We conduct simulation studies to evaluate its finite sample performance and demonstrate its application on a breast cancer gene expression data set. Our simulation studies and data example suggest that SPIDR is a useful method for high-dimensional statistical inference in practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا