ﻻ يوجد ملخص باللغة العربية
Financial trading is at the forefront of time-series analysis, and has grown hand-in-hand with it. The advent of electronic trading has allowed complex machine learning solutions to enter the field of financial trading. Financial markets have both long term and short term signals and thus a good predictive model in financial trading should be able to incorporate them together. One of the most sought after forms of electronic trading is high-frequency trading (HFT), typically known for microsecond sensitive changes, which results in a tremendous amount of data. LSTMs are one of the most capable variants of the RNN family that can handle long-term dependencies, but even they are not equipped to handle such long sequences of the order of thousands of data points like in HFT. We propose very-long short term memory networks, or VLSTMs, to deal with such extreme length sequences. We explore the importance of VLSTMs in the context of HFT. We compare our model on publicly available dataset and got a 3.14% increase in F1-score over the existing state-of-the-art time-series forecasting models. We also show that our model has great parallelization potential, which is essential for practical purposes when trading on such markets.
We demonstrate how machine learning is able to model experiments in quantum physics. Quantum entanglement is a cornerstone for upcoming quantum technologies such as quantum computation and quantum cryptography. Of particular interest are complex quan
Accurate and efficient models for rainfall runoff (RR) simulations are crucial for flood risk management. Most rainfall models in use today are process-driven; i.e. they solve either simplified empirical formulas or some variation of the St. Venant (
Detecting and intercepting malicious requests are one of the most widely used ways against attacks in the network security. Most existing detecting approaches, including matching blacklist characters and machine learning algorithms have all shown to
This study compares the modularity performance of two artificial neural network architectures: a Long Short-Term Memory (LSTM) recurrent network, and Morphognosis, a neural network based on a hierarchy of spatial and temporal contexts. Mazes are used
Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models with significantly increased complexity and a large number of parameter