ﻻ يوجد ملخص باللغة العربية
Detecting and intercepting malicious requests are one of the most widely used ways against attacks in the network security. Most existing detecting approaches, including matching blacklist characters and machine learning algorithms have all shown to be vulnerable to sophisticated attacks. To address the above issues, a more general and rigorous detection method is required. In this paper, we formulate the problem of detecting malicious requests as a temporal sequence classification problem, and propose a novel deep learning model namely Convolutional Neural Network-Bidirectional Long Short-term Memory-Convolutional Neural Network (CNN-BiLSTM-CNN). By connecting the shadow and deep feature maps of the convolutional layers, the malicious feature extracting ability is improved on more detailed functionality. Experimental results on HTTP dataset CSIC 2010 have demonstrated the effectiveness of the proposed method when compared with the state-of-the-arts.
Recurrent neural networks (RNN) are at the core of modern automatic speech recognition (ASR) systems. In particular, long-short term memory (LSTM) recurrent neural networks have achieved state-of-the-art results in many speech recognition tasks, due
This study compares the modularity performance of two artificial neural network architectures: a Long Short-Term Memory (LSTM) recurrent network, and Morphognosis, a neural network based on a hierarchy of spatial and temporal contexts. Mazes are used
Financial trading is at the forefront of time-series analysis, and has grown hand-in-hand with it. The advent of electronic trading has allowed complex machine learning solutions to enter the field of financial trading. Financial markets have both lo
Recent breakthroughs in recurrent deep neural networks with long short-term memory (LSTM) units has led to major advances in artificial intelligence. State-of-the-art LSTM models with significantly increased complexity and a large number of parameter
We investigate a new method to augment recurrent neural networks with extra memory without increasing the number of network parameters. The system has an associative memory based on complex-valued vectors and is closely related to Holographic Reduced