ﻻ يوجد ملخص باللغة العربية
Suppose the ground field $mathbb{F}$ is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalgebra. We also describe the associative superalgebra structures of the (divided power) cohomology for some low-dimensional filiform Lie superalgebras.
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
In this paper, all (super)algebras are over a field $mathbb{F}$ of characteristic different from $2, 3$. We construct the so-called 5-sequences of cohomology for central extensions of a Lie superalgebra and prove that they are exact. Then we prove th
In this paper, we study the cup products and Betti numbers over cohomology superspaces of two-step nilpotent Lie superalgebras with coefficients in the adjoint modules over an algebraically closed field of characteristic zero. As an application, we p
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
We investigate a new cohomology of Lie superalgebras, which may be compared to a de Rham cohomology of Lie supergroups involving both differential and integral forms. It is defined by a BRST complex of Lie superalgebra modules, which is formulated in