ﻻ يوجد ملخص باللغة العربية
We investigate a new cohomology of Lie superalgebras, which may be compared to a de Rham cohomology of Lie supergroups involving both differential and integral forms. It is defined by a BRST complex of Lie superalgebra modules, which is formulated in terms of a Weyl superalgebra and incorporates inequivalent representations of the bosonic Weyl subalgebra. The new cohomology includes the standard Lie superalgebra cohomology as a special case. Examples of new cohomology groups are computed.
We examine in detail the Jacobi-Trudi characters over the ortho-symplectic Lie superalgebras spo(2|2m+1) and spo(2n|3). We furthermore relate them to Serganovas notion of Euler characters.
Suppose the ground field to be algebraically closed and of characteristic different from $2$ and $3$. All Heisenberg Lie superalgebras consist of two sup
Suppose the ground field $mathbb{F}$ is an algebraically closed field of characteristic different from 2, 3. We determine the Betti numbers and make a decomposition of the associative superalgebra of the cohomology for the model filiform Lie superalg
In this paper, all (super)algebras are over a field $mathbb{F}$ of characteristic different from $2, 3$. We construct the so-called 5-sequences of cohomology for central extensions of a Lie superalgebra and prove that they are exact. Then we prove th
The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplica