ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Image Super-Resolution using Cycle-in-Cycle Generative Adversarial Networks

515   0   0.0 ( 0 )
 نشر من قبل Yuan Yuan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the single image super-resolution problem in a more general case that the low-/high-resolution pairs and the down-sampling process are unavailable. Different from traditional super-resolution formulation, the low-resolution input is further degraded by noises and blurring. This complicated setting makes supervised learning and accurate kernel estimation impossible. To solve this problem, we resort to unsupervised learning without paired data, inspired by the recent successful image-to-image translation applications. With generative adversarial networks (GAN) as the basic component, we propose a Cycle-in-Cycle network structure to tackle the problem within three steps. First, the noisy and blurry input is mapped to a noise-free low-resolution space. Then the intermediate image is up-sampled with a pre-trained deep model. Finally, we fine-tune the two modules in an end-to-end manner to get the high-resolution output. Experiments on NTIRE2018 datasets demonstrate that the proposed unsupervised method achieves comparable results as the state-of-the-art supervised models.

قيم البحث

اقرأ أيضاً

Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.
In this paper, we propose a deep generative adversarial network for super-resolution considering the trade-off between perception and distortion. Based on good performance of a recently developed model for super-resolution, i.e., deep residual networ k using enhanced upscale modules (EUSR), the proposed model is trained to improve perceptual performance with only slight increase of distortion. For this purpose, together with the conventional content loss, i.e., reconstruction loss such as L1 or L2, we consider additional losses in the training phase, which are the discrete cosine transform coefficients loss and differential content loss. These consider perceptual part in the content loss, i.e., consideration of proper high frequency components is helpful for the trade-off problem in super-resolution. The experimental results show that our proposed model has good performance for both perception and distortion, and is effective in perceptual super-resolution applications.
105 - Hui Ying , He Wang , Tianjia Shao 2021
Image generation has been heavily investigated in computer vision, where one core research challenge is to generate images from arbitrarily complex distributions with little supervision. Generative Adversarial Networks (GANs) as an implicit approach have achieved great successes in this direction and therefore been employed widely. However, GANs are known to suffer from issues such as mode collapse, non-structured latent space, being unable to compute likelihoods, etc. In this paper, we propose a new unsupervised non-parametric method named mixture of infinite conditional GANs or MIC-GANs, to tackle several GAN issues together, aiming for image generation with parsimonious prior knowledge. Through comprehensive evaluations across different datasets, we show that MIC-GANs are effective in structuring the latent space and avoiding mode collapse, and outperform state-of-the-art methods. MICGANs are adaptive, versatile, and robust. They offer a promising solution to several well-known GAN issues. Code available: github.com/yinghdb/MICGANs.
160 - Rewa Sood , Mirabela Rusu 2019
Acquiring High Resolution (HR) Magnetic Resonance (MR) images requires the patient to remain still for long periods of time, which causes patient discomfort and increases the probability of motion induced image artifacts. A possible solution is to ac quire low resolution (LR) images and to process them with the Super Resolution Generative Adversarial Network (SRGAN) to create a super-resolved version. This work applies SRGAN to MR images of the prostate and performs three experiments. The first experiment explores improving the in-plane MR image resolution by factors of 4 and 8, and shows that, while the PSNR and SSIM (Structural SIMilarity) metrics are lower than the isotropic bicubic interpolation baseline, the SRGAN is able to create images that have high edge fidelity. The second experiment explores anisotropic super-resolution via synthetic images, in that the input images to the network are anisotropically downsampl
Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used to complement ultrasound examinations and x-ray mammography during the early detection and diagnosis of breast cancer. However, images generated by various MRI scanners (e. g. GE Healthcare vs Siemens) differ both in intensity and noise distribution, preventing algorithms trained on MRIs from one scanner to generalize to data from other scanners successfully. We propose a method for image normalization to solve this problem. MRI normalization is challenging because it requires both normalizing intensity values and mapping between the noise distributions of different scanners. We utilize a cycle-consistent generative adversarial network to learn a bidirectional mapping between MRIs produced by GE Healthcare and Siemens scanners. This allows us learning the mapping between two different scanner types without matched data, which is not commonly available. To ensure the preservation of breast shape and structures within the breast, we propose two technical innovations. First, we incorporate a mutual information loss with the CycleGAN architecture to ensure that the structure of the breast is maintained. Second, we propose a modified discriminator architecture which utilizes a smaller field-of-view to ensure the preservation of finer details in the breast tissue. Quantitative and qualitative evaluations show that the second proposed method was able to consistently preserve a high level of detail in the breast structure while also performing the proper intensity normalization and noise mapping. Our results demonstrate that the proposed model can successfully learn a bidirectional mapping between MRIs produced by different vendors, potentially enabling improved accuracy of downstream computational algorithms for diagnosis and detection of breast cancer. All the data used in this study are publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا