ﻻ يوجد ملخص باللغة العربية
Image generation has been heavily investigated in computer vision, where one core research challenge is to generate images from arbitrarily complex distributions with little supervision. Generative Adversarial Networks (GANs) as an implicit approach have achieved great successes in this direction and therefore been employed widely. However, GANs are known to suffer from issues such as mode collapse, non-structured latent space, being unable to compute likelihoods, etc. In this paper, we propose a new unsupervised non-parametric method named mixture of infinite conditional GANs or MIC-GANs, to tackle several GAN issues together, aiming for image generation with parsimonious prior knowledge. Through comprehensive evaluations across different datasets, we show that MIC-GANs are effective in structuring the latent space and avoiding mode collapse, and outperform state-of-the-art methods. MICGANs are adaptive, versatile, and robust. They offer a promising solution to several well-known GAN issues. Code available: github.com/yinghdb/MICGANs.
Great progress has been made by the advances in Generative Adversarial Networks (GANs) for image generation. However, there lacks enough understanding on how a realistic image can be generated by the deep representations of GANs from a random vector.
In this work, we introduce a two-step framework for generative modeling of temporal data. Specifically, the generative adversarial networks (GANs) setting is employed to generate synthetic scenes of moving objects. To do so, we propose a two-step tra
Image generation has raised tremendous attention in both academic and industrial areas, especially for the conditional and target-oriented image generation, such as criminal portrait and fashion design. Although the current studies have achieved prel
Improving the aesthetic quality of images is challenging and eager for the public. To address this problem, most existing algorithms are based on supervised learning methods to learn an automatic photo enhancer for paired data, which consists of low-quality photos and corresponding expert-retouche
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and exp