ﻻ يوجد ملخص باللغة العربية
Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is widely used to complement ultrasound examinations and x-ray mammography during the early detection and diagnosis of breast cancer. However, images generated by various MRI scanners (e.g. GE Healthcare vs Siemens) differ both in intensity and noise distribution, preventing algorithms trained on MRIs from one scanner to generalize to data from other scanners successfully. We propose a method for image normalization to solve this problem. MRI normalization is challenging because it requires both normalizing intensity values and mapping between the noise distributions of different scanners. We utilize a cycle-consistent generative adversarial network to learn a bidirectional mapping between MRIs produced by GE Healthcare and Siemens scanners. This allows us learning the mapping between two different scanner types without matched data, which is not commonly available. To ensure the preservation of breast shape and structures within the breast, we propose two technical innovations. First, we incorporate a mutual information loss with the CycleGAN architecture to ensure that the structure of the breast is maintained. Second, we propose a modified discriminator architecture which utilizes a smaller field-of-view to ensure the preservation of finer details in the breast tissue. Quantitative and qualitative evaluations show that the second proposed method was able to consistently preserve a high level of detail in the breast structure while also performing the proper intensity normalization and noise mapping. Our results demonstrate that the proposed model can successfully learn a bidirectional mapping between MRIs produced by different vendors, potentially enabling improved accuracy of downstream computational algorithms for diagnosis and detection of breast cancer. All the data used in this study are publicly available.
As one of the most commonly ordered imaging tests, computed tomography (CT) scan comes with inevitable radiation exposure that increases the cancer risk to patients. However, CT image quality is directly related to radiation dose, thus it is desirabl
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed.
The application of supervised deep learning methods in digital pathology is limited due to their sensitivity to domain shift. Digital Pathology is an area prone to high variability due to many sources, including the common practice of evaluating seve
This paper aims to contribute in bench-marking the automatic polyp segmentation problem using generative adversarial networks framework. Perceiving the problem as an image-to-image translation task, conditional generative adversarial networks are uti
Generative adversarial networks (GANs) are highly effective unsupervised learning frameworks that can generate very sharp data, even for data such as images with complex, highly multimodal distributions. However GANs are known to be very hard to trai