ترغب بنشر مسار تعليمي؟ اضغط هنا

Retrieve-and-Read: Multi-task Learning of Information Retrieval and Reading Comprehension

88   0   0.0 ( 0 )
 نشر من قبل Kyosuke Nishida
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study considers the task of machine reading at scale (MRS) wherein, given a question, a system first performs the information retrieval (IR) task of finding relevant passages in a knowledge source and then carries out the reading comprehension (RC) task of extracting an answer span from the passages. Previous MRS studies, in which the IR component was trained without considering answer spans, struggled to accurately find a small number of relevant passages from a large set of passages. In this paper, we propose a simple and effective approach that incorporates the IR and RC tasks by using supervised multi-task learning in order that the IR component can be trained by considering answer spans. Experimental results on the standard benchmark, answering SQuAD questions using the full Wikipedia as the knowledge source, showed that our model achieved state-of-the-art performance. Moreover, we thoroughly evaluated the individual contributions of our model components with our new Japanese dataset and SQuAD. The results showed significant improvements in the IR task and provided a new perspective on IR for RC: it is effective to teach which part of the passage answers the question rather than to give only a relevance score to the whole passage.



قيم البحث

اقرأ أيضاً

This paper considers the reading comprehension task in which multiple documents are given as input. Prior work has shown that a pipeline of retriever, reader, and reranker can improve the overall performance. However, the pipeline system is inefficie nt since the input is re-encoded within each module, and is unable to leverage upstream components to help downstream training. In this work, we present RE$^3$QA, a unified question answering model that combines context retrieving, reading comprehension, and answer reranking to predict the final answer. Unlike previous pipelined approaches, RE$^3$QA shares contextualized text representation across different components, and is carefully designed to use high-quality upstream outputs (e.g., retrieved context or candidate answers) for directly supervising downstream modules (e.g., the reader or the reranker). As a result, the whole network can be trained end-to-end to avoid the context inconsistency problem. Experiments show that our model outperforms the pipelined baseline and achieves state-of-the-art results on t
Recently, there have been significant advances in neural methods for tackling knowledge-intensive tasks such as open domain question answering (QA). These advances are fueled by combining large pre-trained language models with learnable retrieval of documents. Majority of these models use separate encoders for learning query representation, passage representation for the retriever and an additional encoder for the downstream task. Using separate encoders for each stage/task occupies a lot of memory and makes it difficult to scale to a large number of tasks. In this paper, we propose a novel Retrieval Optimized Multi-task (ROM) framework for jointly training self-supervised tasks, knowledge retrieval, and extractive question answering. Our ROM approach presents a unified and generalizable framework that enables scaling efficiently to multiple tasks, varying levels of supervision, and optimization choices such as different learning schedules without changing the model architecture. It also provides the flexibility of changing the encoders without changing the architecture of the system. Using our framework, we achieve comparable or better performance than recent methods on QA, while drastically reducing the number of parameters.
We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at https://github.com/xycforgithub/MultiTask-MRC.
Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chun ks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).
Machine Reading Comprehension (MRC) aims to extract answers to questions given a passage. It has been widely studied recently, especially in open domains. However, few efforts have been made on closed-domain MRC, mainly due to the lack of large-scale training data. In this paper, we introduce a multi-target MRC task for the medical domain, whose goal is to predict answers to medical questions and the corresponding support sentences from medical information sources simultaneously, in order to ensure the high reliability of medical knowledge serving. A high-quality dataset is manually constructed for the purpose, named Multi-task Chinese Medical MRC dataset (CMedMRC), with detailed analysis conducted. We further propose the Chinese medical BERT model for the task (CMedBERT), which fuses medical knowledge into pre-trained language models by the dynamic fusion mechanism of heterogeneous features and the multi-task learning strategy. Experiments show that CMedBERT consistently outperforms strong baselines by fusing context-aware and knowledge-aware token representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا