ﻻ يوجد ملخص باللغة العربية
We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at https://github.com/xycforgithub/MultiTask-MRC.
This study considers the task of machine reading at scale (MRS) wherein, given a question, a system first performs the information retrieval (IR) task of finding relevant passages in a knowledge source and then carries out the reading comprehension (
In this paper, we study machine reading comprehension (MRC) on long texts, where a model takes as inputs a lengthy document and a question and then extracts a text span from the document as an answer. State-of-the-art models tend to use a pretrained
Multi-hop machine reading comprehension is a challenging task in natural language processing, which requires more reasoning ability and explainability. Spectral models based on graph convolutional networks grant the inferring abilities and lead to co
Pretrained language models have significantly improved the performance of down-stream language understanding tasks, including extractive question answering, by providing high-quality contextualized word embeddings. However, learning question answerin
Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this pap