ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagrammatic proof of the large $N$ melonic dominance in the SYK model

391   0   0.0 ( 0 )
 نشر من قبل Valentin Bonzom
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A crucial result on the celebrated Sachdev-Ye-Kitaev model is that its large $N$ limit is dominated by melonic graphs. In this letter we offer a rigorous, diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.

قيم البحث

اقرأ أيضاً

72 - Oleg Evnin 2020
We consider a Gaussian rotationally invariant ensemble of random real totally symmetric tensors with independent normally distributed entries, and estimate the largest eigenvalue of a typical tensor in this ensemble by examining the rate of growth of a random initial vector under successive applications of a nonlinear map defined by the random tensor. In the limit of a large number of dimensions, we observe that a simple form of melonic dominance holds, and the quantity we study is effectively determined by a single Feynman diagram arising from the Gaussian average over the tensor components. This computation suggests that the largest tensor eigenvalue in our ensemble in the limit of a large number of dimensions is proportional to the square root of the number of dimensions, as it is for random real symmetric matrices.
We demonstrate that random tensors transforming under rank-$5$ irreducible representations of $mathrm{O}(N)$ can support melonic large $N$ expansions. Our construction is based on models with sextic ($5$-simplex) interaction, which generalize previou sly studied rank-$3$ models with quartic (tetrahedral) interaction (arXiv:1712.00249 and arXiv:1803.02496). Beyond the irreducible character of the representations, our proof relies on recursive bounds derived from a detailed combinatorial analysis of the Feynman graphs. Our results provide further evidence that the melonic limit is a universal feature of irreducible tensor models in arbitrary rank.
301 - Valentin Bonzom 2019
Tensor models are natural generalizations of matrix models. The interactions and observables in the case of unitary invariant models are generalizations of matrix traces. Some notable interactions in the literature include the melonic ones, the tetra hedral one as well as the planar ones in rank three, or necklaces in even ranks. Here we introduce generalized melonic interactions which generalize the melonic and necklace interactions. We characterize them as tree-like gluings of quartic interactions. We also completely characterize the Feynman graphs which contribute to the large $N$ limit. For a subclass of generalized melonic interactions called totally unbalanced interactions, we prove that the large $N$ limit is Gaussian and therefore the Feynman graphs are in bijection with trees. This result further extends the class of tensor models which fall into the Gaussian universality class. Another key aspect of tensor models with generalized melonic interactions is that they can be written as matrix models without increasing the number of degrees of freedom of the original tensor models. In the case of totally unbalanced interactions, this new matrix model formulation in fact decreases the number of degrees of freedom, meaning that some of the original degrees of freedom are effectively integrated. We then show how the large $N$ Gaussian behavior can be reproduced using a saddle point analysis on those matrix models.
We pursue the analysis of nesting statistics in the $O(n)$ loop model on random maps, initiated for maps with the topology of disks and cylinders in math-ph/1605.02239, here for arbitrary topologies. For this purpose we rely on the topological recurs ion results of math-ph/0910.5896 and math-ph/1303.5808 for the enumeration of maps in the $O(n)$ model. We characterize the generating series of maps of genus $g$ with $k$ marked points and $k$ boundaries and realizing a fixed nesting graph. These generating series are amenable to explicit computations in the loop model with bending energy on triangulations, and we characterize their behavior at criticality in the dense and in the dilute phase.
We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so that each elementary piece is a map that may have arbitrary even face degrees. In the induced statistics, these maps are drawn according to a Boltzmann distribution whose parameters (the face weights) are determined by a fixed point condition. In particular, we show that the dense and dilute critical points of the O(n) model correspond to bipartite maps with large faces (i.e. whose degree distribution has a fat tail). The re-expression of the fixed point condition in terms of linear integral equations allows us to explore the phase diagram of the model. In particular, we determine this phase diagram exactly for the simplest version of the model where the loops are rigid. Several generalizations of the model are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا