ﻻ يوجد ملخص باللغة العربية
We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so that each elementary piece is a map that may have arbitrary even face degrees. In the induced statistics, these maps are drawn according to a Boltzmann distribution whose parameters (the face weights) are determined by a fixed point condition. In particular, we show that the dense and dilute critical points of the O(n) model correspond to bipartite maps with large faces (i.e. whose degree distribution has a fat tail). The re-expression of the fixed point condition in terms of linear integral equations allows us to explore the phase diagram of the model. In particular, we determine this phase diagram exactly for the simplest version of the model where the loops are rigid. Several generalizations of the model are discussed.
We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows to express the partition function of the O(n) loop model as a special
We pursue the analysis of nesting statistics in the $O(n)$ loop model on random maps, initiated for maps with the topology of disks and cylinders in math-ph/1605.02239, here for arbitrary topologies. For this purpose we rely on the topological recurs
We compute the generating functions of a O(n) model (loop gas model) on a random lattice of any topology. On the disc and the cylinder, they were already known, and here we compute all the other topologies. We find that the generating functions (and
We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symme
A crucial result on the celebrated Sachdev-Ye-Kitaev model is that its large $N$ limit is dominated by melonic graphs. In this letter we offer a rigorous, diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.