ترغب بنشر مسار تعليمي؟ اضغط هنا

Melonic dominance and the largest eigenvalue of a large random tensor

73   0   0.0 ( 0 )
 نشر من قبل Oleg Evnin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Oleg Evnin




اسأل ChatGPT حول البحث

We consider a Gaussian rotationally invariant ensemble of random real totally symmetric tensors with independent normally distributed entries, and estimate the largest eigenvalue of a typical tensor in this ensemble by examining the rate of growth of a random initial vector under successive applications of a nonlinear map defined by the random tensor. In the limit of a large number of dimensions, we observe that a simple form of melonic dominance holds, and the quantity we study is effectively determined by a single Feynman diagram arising from the Gaussian average over the tensor components. This computation suggests that the largest tensor eigenvalue in our ensemble in the limit of a large number of dimensions is proportional to the square root of the number of dimensions, as it is for random real symmetric matrices.



قيم البحث

اقرأ أيضاً

A crucial result on the celebrated Sachdev-Ye-Kitaev model is that its large $N$ limit is dominated by melonic graphs. In this letter we offer a rigorous, diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.
We demonstrate that random tensors transforming under rank-$5$ irreducible representations of $mathrm{O}(N)$ can support melonic large $N$ expansions. Our construction is based on models with sextic ($5$-simplex) interaction, which generalize previou sly studied rank-$3$ models with quartic (tetrahedral) interaction (arXiv:1712.00249 and arXiv:1803.02496). Beyond the irreducible character of the representations, our proof relies on recursive bounds derived from a detailed combinatorial analysis of the Feynman graphs. Our results provide further evidence that the melonic limit is a universal feature of irreducible tensor models in arbitrary rank.
301 - Valentin Bonzom 2019
Tensor models are natural generalizations of matrix models. The interactions and observables in the case of unitary invariant models are generalizations of matrix traces. Some notable interactions in the literature include the melonic ones, the tetra hedral one as well as the planar ones in rank three, or necklaces in even ranks. Here we introduce generalized melonic interactions which generalize the melonic and necklace interactions. We characterize them as tree-like gluings of quartic interactions. We also completely characterize the Feynman graphs which contribute to the large $N$ limit. For a subclass of generalized melonic interactions called totally unbalanced interactions, we prove that the large $N$ limit is Gaussian and therefore the Feynman graphs are in bijection with trees. This result further extends the class of tensor models which fall into the Gaussian universality class. Another key aspect of tensor models with generalized melonic interactions is that they can be written as matrix models without increasing the number of degrees of freedom of the original tensor models. In the case of totally unbalanced interactions, this new matrix model formulation in fact decreases the number of degrees of freedom, meaning that some of the original degrees of freedom are effectively integrated. We then show how the large $N$ Gaussian behavior can be reproduced using a saddle point analysis on those matrix models.
482 - Yuning Yang 2021
This short note presents upper bounds of the expectations of the largest singular values/eigenvalues of various types of random tensors in the non-asymptotic sense. For a standard Gaussian tensor of size $n_1timescdotstimes n_d$, it is shown that the expectation of its largest singular value is upper bounded by $sqrt {n_1}+cdots+sqrt {n_d}$. For the expectation of the largest $ell^d$-singular value, it is upper bounded by $2^{frac{d-1}{2}}prod_{j=1}^{d}n_j^{frac{d-2}{2d}}sum^d_{j=1}n_j^{frac{1}{2}}$. We also derive the upper bounds of the expectations of the largest Z-/H-($ell^d$)/M-/C-eigenvalues of symmetric, partially symmetric, and piezoelectric-type Gaussian tensors, which are respectively upper bounded by $dsqrt n$, $dcdot 2^{frac{d-1}{2}}n^{frac{d-1}{2}}$, $2sqrt m+2sqrt n$, and $3sqrt n$.
125 - Alice Guionnet 2018
In this paper, we consider the addition of two matrices in generic position, namely A + U BU * , where U is drawn under the Haar measure on the unitary or the orthogonal group. We show that, under mild conditions on the empirical spectral measures of the deterministic matrices A and B, the law of the largest eigenvalue satisfies a large deviation principle, in the scale N, with an explicit rate function involving the limit of spherical integrals. We cover in particular all the cases when A and B have no outliers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا