ﻻ يوجد ملخص باللغة العربية
4-derivative gravity provides a renormalizable theory of quantum gravity at the price of introducing a physical ghost, which could admit a sensible positive-energy quantization. To understand its physics, we compute ghost-mediated scatterings among matter particles at tree-level, finding a new power-like infra-red enhancement typical of 4-derivative theories, that we dub $ghostrahlung$. Super-Planckian scatterings get downgraded to Planckian by radiating hard gravitons and ghosts, which are weakly coupled and carry away the energy.
Motivated by the vast string landscape, we consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. After field redefinitions these theories reduce to Gauss-Bonnet g
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work wi
Recently there has been a growing interest in quantum gravity theories with more than four derivatives, including both their quantum and classical aspects. In this work we extend the recent results concerning the non-singularity of the modified Newto
We propose an entropy current for dynamical black holes in a theory with arbitrary four derivative corrections to Einsteins gravity, linearized around a stationary black hole. The Einstein-Gauss-Bonnet theory is a special case of the class of theorie
In general coordinate invariant gravity theories whose Lagrangians contain arbitrarily high order derivative fields, the Noether currents for the global translation and for the Nakanishis IOSp(8|8) choral symmetry containing the BRS symmetry as its m