ترغب بنشر مسار تعليمي؟ اضغط هنا

Noether Currents and Maxwell-type Equations of Motion in Higher Derivative Gravity Theories

79   0   0.0 ( 0 )
 نشر من قبل Taichiro Kugo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Taichiro Kugo




اسأل ChatGPT حول البحث

In general coordinate invariant gravity theories whose Lagrangians contain arbitrarily high order derivative fields, the Noether currents for the global translation and for the Nakanishis IOSp(8|8) choral symmetry containing the BRS symmetry as its member, are constructed. We generally show that for each of those Noether currents a suitable linear combination of equations of motion can be brought into the form of Maxwell-type field equation possessing the Noether current as its source term.



قيم البحث

اقرأ أيضاً

Motivated by the vast string landscape, we consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. After field redefinitions these theories reduce to Gauss-Bonnet g ravity, which has special properties that allow us to compute the shear viscosity nonperturbatively in the Gauss-Bonnet coupling. By tuning of the coupling, the value of the shear viscosity to entropy density ratio can be adjusted to any positive value from infinity down to zero, thus violating the conjectured viscosity bound. At linear order in the coupling, we also check consistency of four different methods to calculate the shear viscosity, and we find that all of them agree. We search for possible pathologies associated with this class of theories violating the viscosity bound.
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work wi th a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered duality that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable.
We study holographic shear sum rules in Einstein gravity with curvature squared corrections. Sum rules relate weighted integral over spectral densities of retarded correlators in the shear channel to the one point functions of the CFTs. The proportio nality constant can be written in terms of the data of three point functions of the stress tenors of the CFT ($t_2$ and $t_4$). For CFTs dual to two derivative Einstein gravity, this proportionality constant is just $frac{d}{2(d+1)}$. This has been verified by a direct holographic computation of the retarded correlator for Einstein gravity in $AdS_{d+1}$ black hole background. We compute corrections to the holographic shear sum rule in presence of higher derivative corrections to the Einstein-Hilbert action. We find agreement between the sum rule obtained from a general CFT analysis and holographic computation for Gauss Bonnet theories in $AdS_5$ black hole background. We then generalize the sum rule for arbitrary curvature squared corrections to Einstein-Hilbert action in $dgeq 4$. Evaluating the parameters $t_2$ and $t_4$ for the possible dual CFT in presence of such curvature corrections, we find an agreement with the general field theory derivation to leading order in coupling constants of the higher derivative terms.
72 - Breno L. Giacchini 2016
Recently there has been a growing interest in quantum gravity theories with more than four derivatives, including both their quantum and classical aspects. In this work we extend the recent results concerning the non-singularity of the modified Newto nian potential to the most relevant case in which the propagator has complex poles. The model we consider is Einstein-Hilbert action augmented by curvature-squared higher-derivative terms which contain polynomials on the dAlembert operator. We show that the classical potential of these theories is a real quantity and it is regular at the origin disregard the (complex or real) nature or the multiplicity of the massive poles. The expression for the potential is explicitly derived for some interesting particular cases. Finally, the issue of the mechanism behind the cancellation of the singularity is discussed; specifically we argue that the regularity of the potential can hold even if the number of massive tensor modes and scalar ones is not the same.
We propose an entropy current for dynamical black holes in a theory with arbitrary four derivative corrections to Einsteins gravity, linearized around a stationary black hole. The Einstein-Gauss-Bonnet theory is a special case of the class of theorie s that we consider. Within our approximation, our construction allows us to write down a completely local version of the second law of black hole thermodynamics, in the presence of the higher derivative corrections considered here. This ultra-local, stronger form of the second law is a generalization of a weaker form, applicable to the total entropy, integrated over a compact `time-slice of the horizon, a proof of which has been recently presented in arXiv:1504.08040. We also provide a general algorithm to construct the entropy current for the four derivative theories, which may be straightforwardly generalized to arbitrary higher derivative corrections to Einsteins gravity. This algorithm highlights the possible ambiguities in defining the entropy current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا