ﻻ يوجد ملخص باللغة العربية
We compute the one-loop divergences in a higher-derivative theory of gravity including Ricci tensor squared and Ricci scalar squared terms, in addition to the Hilbert and cosmological terms, on an (generally off-shell) Einstein background. We work with a two-parameter family of parametrizations of the graviton field, and a two-parameter family of gauges. We find that there are some choices of gauge or parametrization that reduce the dependence on the remaining parameters. The results are invariant under a recently discovered duality that involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable.
Motivated by the vast string landscape, we consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. After field redefinitions these theories reduce to Gauss-Bonnet g
Recently there has been a growing interest in quantum gravity theories with more than four derivatives, including both their quantum and classical aspects. In this work we extend the recent results concerning the non-singularity of the modified Newto
In general coordinate invariant gravity theories whose Lagrangians contain arbitrarily high order derivative fields, the Noether currents for the global translation and for the Nakanishis IOSp(8|8) choral symmetry containing the BRS symmetry as its m
Existence and stability analysis of the Kantowski-Sachs type inflationary universe in a higher derivative scalar-tensor gravity theory is studied in details. Isotropic de Sitter background solution is shown to be stable against any anisotropic pertur
Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS