ﻻ يوجد ملخص باللغة العربية
The exploration of large-scale many-body phenomena in quantum materials has produced many important experimental discoveries, including novel states of entanglement, topology and quantum order as found for example in quantum spin ices, topological insulators and semimetals, complex magnets, and high-$T_c$ superconductors. Yet, the sheer scale of solid-state systems and the difficulty of exercising exacting control of their quantum mechanical degrees of freedom limit the pace of rational progress in advancing the properties of these and other materials. With extraordinary effort to counteract natural processes of dissipation, precisely engineered ultracold quantum simulators could point the way to exotic new materials. Here, we look instead to the quantum mechanical character of the arrested state formed by a quenched ultracold molecular plasma. This novel class of system arises spontaneously, without a deliberate engineering of interactions, and evolves naturally from state-specified initial conditions, to a long-lived final state of canonical density, in a process that conflicts with classical notions of plasma dissipation and neutral dissociation. We take information from experimental observations to develop a conceptual argument that attempts to explain this state of arrested relaxation in terms of a minimal phenomenological model of randomly interacting dipoles of random energies. This model of the plasma forms a starting point to describe its observed absence of relaxation in terms of many-body localization (MBL). The large number of accessible Rydberg and excitonic states gives rise to an unconventional web of many-body interactions that vastly exceeds the complexity of MBL in a conventional few-level scheme. This experimental platform thus opens an avenue for the coupling of dipoles in disordered environments that will demand the development of new theoretical tools.
Motivated by the question of whether disorder is a prerequisite for localization to occur in quantum many-body systems, we study a frustrated one-dimensional spin chain, which supports localized many-body eigenstates in the absence of disorder. When
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by
One fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept, challenging our understanding
In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law in a many-body localized system at t
In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down completely, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge b