ﻻ يوجد ملخص باللغة العربية
One fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept, challenging our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single site resolved measurements we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments mark the first demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by
In the presence of sufficiently strong disorder or quasiperiodic fields, an interacting many-body system can fail to thermalize and become many-body localized. The associated transition is of particular interest, since it occurs not only in the groun
In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down completely, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge b
In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law in a many-body localized system at t
In the presence of disorder, an interacting closed quantum system can undergo many-body localization (MBL) and fail to thermalize. However, over long times even weak couplings to any thermal environment will necessarily thermalize the system and eras