ﻻ يوجد ملخص باللغة العربية
Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms directly inspired by natural evolution, we have retrieved emblematic natural photonic structures, indicating how such regular structures might have spontaneously emerged in nature and to which precise optical or fabrication constraints they respond. Comparisons between algorithms show that recombination between individuals inspired by sexual reproduction confers a clear advantage in this context of modular problems and suggest further ways to improve the algorithms. Such an in silico evolution can also suggest original and elegant solutions to practical problems, as illustrated by the design of counter-intuitive anti-reflective coating for solar cells.
High-resolution optical microscopy suffers from a low contrast in scattering media where a multiply scattered wave obscures a ballistic wave used for image formation. To extend the imaging depth, various gating operations - confocal, coherence, and p
We investigate the use of a Genetic Algorithm (GA) to design a set of photonic crystals (PCs) in one and two dimensions. Our flexible design methodology allows us to optimize PC structures which are optimized for specific objectives. In this paper, w
We outline a recently developed theory of impedance-matching, or reflectionless excitation of arbitrary finite photonic structures in any dimension. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be po
In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the
The collective response of a system is profoundly shaped by the interaction dynamics between its constituent elements. In physics, tailoring these interactions can enable the observation of unusual phenomena that are otherwise inaccessible in standar