ترغب بنشر مسار تعليمي؟ اضغط هنا

Electro-optic and magneto-optic photonic devices based on multilayers photonic structures

445   0   0.0 ( 0 )
 نشر من قبل Francesco Scotognella
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the first one a liquid crystal has been infiltrated in the pores of the nanoparticle network, while in the second one the optical response to the electric field of metallic nanoparticles has been exploited. Then, we present a 1D photonic crystal made with indium tin oxide (ITO) nanoparticles, and we propose this system for electro-optic tuning. Finally, we describe a microcavity with a defect mode that is tuned in the near infrared by the magnetic field, envisaging a contact-less magneto-optic switch. These optical switches can find applications in ICT and electrochromic windows.



قيم البحث

اقرأ أيضاً

We demonstrate a high-contrast electro-optic modulation of a photonic crystal nanocavity integrated with an electrically gated monolayer graphene. A high quality (Q) factor air-slot nanocavity design is employed for high overlap between the optical f ield and graphene sheet. Tuning of graphenes Fermi level up to 0.8 eV enables efficient control of its complex dielectric constant, which allows modulation of the cavity reflection in excess of 10 dB for a swing voltage of only 1.5 V. We also observe a controllable resonance wavelength shift close to 2 nm around a wavelength of 1570 nm and a Q factor modulation in excess of three. These observations allow cavity-enhanced measurements of the graphene complex dielectric constant under different chemical potentials, in agreement with a theoretical model of the graphene dielectric constant under gating. This graphene-based nanocavity modulation demonstrates the feasibility of high-contrast, low-power frequency-selective electro-optic nanocavity modulators in graphene-integrated silicon photonic chips.
We demonstrated a tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals. The light experiences an anomalous dispersion near the transmission center and a normal dispersion away from the center, where it can be accelerated and slowed down, respectively. We also obtained the switch between fast and slow light by adjusting the external electric filed. The observed largest temporal gap is 541 ps, which is crucial in practical event operation inside the gap. The results offer a new solution for temporal cloak.
Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metr ics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here we make an important step towards miniaturizing functional components on this platform, reporting probably the smallest high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz/V, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58 $mu {rm m}^3$. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb/s with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.
Future quantum networks in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platfo rm to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical quality factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.
Modern communication networks require high performance and scalable electro-optic modulators that convert electrical signals to optical signals at high speed. Existing lithium niobate modulators have excellent performance but are bulky and prohibitiv ely expensive to scale up. Here we demonstrate scalable and high-performance nanophotonic electro-optic modulators made of single-crystalline lithium niobate microring resonators and micro-Mach-Zehnder interferometers. We show a half-wave electro-optic modulation efficiency of 1.8V$cdot$cm and data rates up to 40 Gbps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا