ترغب بنشر مسار تعليمي؟ اضغط هنا

Pure states statistical mechanics: On its foundations and applications to quantum gravity

75   0   0.0 ( 0 )
 نشر من قبل Fabio Anza
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabio Anza




اسأل ChatGPT حول البحث

The project concerns the interplay among quantum mechanics, statistical mechanics and thermodynamics, in isolated quantum systems. The underlying goal is to improve our understanding of the concept of thermal equilibrium in quantum systems. First, I investigated the role played by observables and measurements in the emergence of thermal behaviour. This led to a new notion of thermal equilibrium which is specific for a given observable, rather than for the whole state of the system. The equilibrium picture that emerges is a generalization of statistical mechanics in which we are not interested in the state of the system but only in the outcome of the measurement process. I investigated how this picture relates to one of the most promising approaches for the emergence of thermal behaviour in isolated quantum systems: the Eigenstate Thermalization Hypothesis. Then, I applied the results to study some equilibrium properties of many-body localised systems. Despite the localization phenomenon, which prevents thermalization of subsystems, I was able to show that we can still use the predictions of statistical mechanics to describe the equilibrium of some observables. Moreover, the intuition developed in the process led me to propose an experimentally accessible way to unravel the interacting nature of many-body localised systems. Second, I exploited the Concentration of Measure phenomenon to study the macroscopic properties of the basis states of Loop Quantum Gravity. These techniques were previously used to explain why the thermal behaviour in quantum systems is such an ubiquitous phenomenon, at the macroscopic scale. I focused on the local properties, their thermodynamic behaviour and interplay with the semiclassical limit. This was motivated by the necessity to understand, from a quantum gravity perspective, how and why a classical horizon exhibits thermal properties.



قيم البحث

اقرأ أيضاً

A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r eference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.
Since the first suggestion of the Jarzynski equality many derivations of this equality have been presented in both, the classical and the quantum context. While the approaches and settings greatly differ from one to another, they all appear to rely o n the initial state being a thermal Gibbs state. Here, we present an investigation of work distributions in driven isolated quantum systems, starting off from pure states that are close to energy eigenstates of the initial Hamiltonian. We find that, for the nonintegrable system in quest, the Jarzynski equality is fulfilled to good accuracy.
81 - V.E. Shemi-zadeh 2002
On the base of years of experience of working on the problem of the physical foundation of quantum mechanics the author offers principles of solving it. Under certain pressure of mathematical formalism there has raised a hypothesis of complexity of s pace and time by Minkovsky, being significant mainly for quantum objects. In this eight-dimensional space and time with six space and two time dimensions all the problems and peculiarities of quantum mechanical formalism disappear, the reasons of their appearance become clear, and there comes a clear and physically transparent picture of the foundations of quantum mechanics.
Recently, new thermodynamic inequalities have been obtained, which set bounds on the quadratic fluctuations of intensive observables of statistical mechanical systems in terms of the Bogoliubov - Duhamel inner product and some thermal average values. It was shown that several well-known inequalities in equilibrium statistical mechanics emerge as special cases of these results. On the basis of the spectral representation, lower and upper bounds on the one-sided fidelity susceptibility were derived in analogous terms. Here, these results are reviewed and presented in a unified manner. In addition, the spectral representation of the symmetric two-sided fidelity susceptibility is derived, and it is shown to coincide with the one-sided case. Therefore, both definitions imply the same lower and upper bounds on the fidelity susceptibility.
The basic notions of statistical mechanics (microstates, multiplicities) are quite simple, but understanding how the second law arises from these ideas requires working with cumbersomely large numbers. To avoid getting bogged down in mathematics, one can compute multiplicities numerically for a simple model system such as an Einstein solid -- a collection of identical quantum harmonic oscillators. A computer spreadsheet program or comparable software can compute the required combinatoric functions for systems containing a few hundred oscillators and units of energy. When two such systems can exchange energy, one immediately sees that some configurations are overwhelmingly more probable than others. Graphs of entropy vs. energy for the two systems can be used to motivate the theoretical definition of temperature, $T= (partial S/partial U)^{-1}$, thus bridging the gap between the classical and statistical approaches to entropy. Further spreadsheet exercises can be used to compute the heat capacity of an Einstein solid, study the Boltzmann distribution, and explore the properties of a two-state paramagnetic system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا