ﻻ يوجد ملخص باللغة العربية
On the base of years of experience of working on the problem of the physical foundation of quantum mechanics the author offers principles of solving it. Under certain pressure of mathematical formalism there has raised a hypothesis of complexity of space and time by Minkovsky, being significant mainly for quantum objects. In this eight-dimensional space and time with six space and two time dimensions all the problems and peculiarities of quantum mechanical formalism disappear, the reasons of their appearance become clear, and there comes a clear and physically transparent picture of the foundations of quantum mechanics.
The project concerns the interplay among quantum mechanics, statistical mechanics and thermodynamics, in isolated quantum systems. The underlying goal is to improve our understanding of the concept of thermal equilibrium in quantum systems. First, I
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism. For this purpose I propose an epistemological criterion to decide whether or not a phy
Quantum annealing is a generic name of quantum algorithms to use quantum-mechanical fluctuations to search for the solution of optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. Th
We consider a finite one-dimensional chain of quantum rotors interacting with a set of thermal baths at different temperatures. When the interaction between the rotors is made chiral, such a system behaves as an autonomous thermal motor, converting h
A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r