ترغب بنشر مسار تعليمي؟ اضغط هنا

Purely rotational symmetry-protected topological crystalline insulator $alpha$-Bi4Br4

76   0   0.0 ( 0 )
 نشر من قبل Tay-Rong Chang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent theoretical advances have proposed a new class of topological crystalline insulator (TCI) phases protected by rotational symmetries. Distinct from topological insulators (TIs), rotational symmetry-protected TCIs are expected to show unique topologically protected boundary modes: First, the surface normal to the rotational axis features unpinned Dirac surface states whose Dirac points are located at generic k points. Second, due to the higher-order bulk boundary correspondence, a 3D TCI also supports 1D helical edge states. Despite the unique topological electronic properties, to date, purely rotational symmetry-protected TCIs remain elusive in real materials. Using first-principles band calculations and theoretical modeling, we identify the van der Waals material $alpha$-Bi4Br4 as a TCI purely protected by rotation symmetry. We show that the Bi4Br4s (010) surface exhibits a pair of unpinned topological Dirac fermions protected by the two-fold rotational axis. These unpinned Dirac fermions show an exotic spin texture highly favorable for spin transport and a band structure consisting of van Hove singularities due to Lifshitz transition. We also identify 1D topological hinge states along the edges of an $alpha$-Bi4Br4 rod. We further discuss how the proposed topological electronic properties in $alpha$-Bi4Br4 can be observed by various experimental techniques.

قيم البحث

اقرأ أيضاً

Topological phenomena are commonly studied in phases of matter which are separated from a trivial phase by an unavoidable quantum phase transition. This can be overly restrictive, leaving out scenarios of practical relevance -- similar to the distinc tion between liquid water and vapor. Indeed, we show that topological phenomena can be stable over a large part of parameter space even when the bulk is strictly speaking in a trivial phase of matter. In particular, we focus on symmetry-protected topological phases which can be trivialized by extending the symmetry group. The topological Haldane phase in spin chains serves as a paradigmatic example where the $SO(3)$ symmetry is extended to $SU(2)$ by tuning away from the Mott limit. Although the Haldane phase is then adiabatically connected to a product state, we show that characteristic phenomena -- edge modes, entanglement degeneracies and bulk phase transitions -- remain parametrically stable. This stability is due to a separation of energy scales, characterized by quantized invariants which are well-defined when a subgroup of the symmetry only acts on high-energy degrees of freedom. The low-energy symmetry group is a quotient group whose emergent anomalies stabilize edge modes and unnecessary criticality, which can occur in any dimension.
A new class of materials, Topological Crystalline Insulators (TCIs) have been shown to possess exotic surface state properties that are protected by mirror symmetry. These surface features can be enhanced if the surface-area-to-volume ratio of the ma terial increases, or the signal arising from the bulk of the material can be suppressed. We report the experimental procedures to obtain high quality crystal boules of the TCI, SnTe, from which nanowires and microcrystals can be produced by the vapour-liquid-solid (VLS) technique. Detailed characterisation measurements of the bulk crystals as well as of the nanowires and microcrystals produced are presented. The nanomaterials produced were found to be stoichiometrically similar to the source material used. Electron back-scatter diffraction (EBSD) shows that the majority of the nanocrystals grow in the vicinal {001} direction to the growth normal. The growth conditions to produce the different nanostructures of SnTe have been optimised.
Topological crystalline insulators (TCIs) are insulating electronic states with nontrivial topology protected by crystalline symmetries. Recently, theory has proposed new classes of TCIs protected by rotation symmetries ^C$_n$, which have surface rot ation anomaly evading the fermion doubling theorem, i.e. n instead of 2n Dirac cones on the surface preserving the rotation symmetry. Here, we report the first realization of the ^C$_2$ rotation anomaly in a binary compound SrPb. Our first-principles calculations reveal two massless Dirac fermions protected by the combination of time-reversal symmetry ^T and ^C$_{2y}$ on the (010) surface. Using angle-resolved photoemission spectroscopy, we identify two Dirac surface states inside the bulk band gap of SrPb, confirming the ^C$_2$ rotation anomaly in the new classes of TCIs. The findings enrich the classification of topological phases, which pave the way for exploring exotic behaviour of the new classes of TCIs.
Layered narrow band gap semiconductor Bi2Se3 is composed of heavy elements with strong spin-orbital coupling (SOC), which has been identified both as a good candidate of thermoelectric material of high thermoelectric figure-of-merit (ZT) and a topolo gical insulator of Z2-type with a gapless surface band in Dirac cone shape. The existence of a conjugated pi-bond system on the surface of each Bi2Se3 quintuple layer is proposed based on an extended valence bond model having valence electrons distributed in the hybridized orbitals. Supporting experimental evidences of a 2D conjugated pi-bond system on each quintuple layer of Bi2Se3 are provided by electron energy-loss spectroscopy (EELS) and electron density (ED) mapping through inverse Fourier transform of X-ray diffraction data. Quantum chemistry calculations support the pi-bond existence between partially filled 4pz orbitals of Se via side-to-side orbital overlap positively. The conjugated pi-bond system on the surface of each quintuple Bi2Se3 layer is proposed being similar to that found in graphite (graphene) and responsible for the unique 2D conduction mechanism. The van der Waals (vdW) attractive force between quintuple layers is interpreted being coming from the anti-ferroelectrically ordered effective electric dipoles which are constructed with pi-bond trimer pairs on Se-layers across the vdW gap of minimized Coulomb repulsion.
Topological crystalline insulators (TCIs) are insulating materials whose topological property relies on generic crystalline symmetries. Based on first-principles calculations, we study a three-dimensional (3D) crystal constructed by stacking two-dime nsional TCI layers. Depending on the inter-layer interaction, the layered crystal can realize diverse 3D topological phases characterized by two mirror Chern numbers (MCNs) ($mu_1,mu_2$) defined on inequivalent mirror-invariant planes in the Brillouin zone. As an example, we demonstrate that new TCI phases can be realized in layered materials such as a PbSe (001) monolayer/h-BN heterostructure and can be tuned by mechanical strain. Our results shed light on the role of the MCNs on inequivalent mirror-symmetric planes in reciprocal space and open new possibilities for finding new topological materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا