ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Deep Unified Framework for Nuclear Reactor Perturbation Analysis

99   0   0.0 ( 0 )
 نشر من قبل Georgios Leontidis
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we take the first steps towards a novel unified framework for the analysis of perturbations in both the Time and Frequency domains. The identification of type and source of such perturbations is fundamental for monitoring reactor cores and guarantee safety while running at nominal conditions. A 3D Convolutional Neural Network (3D-CNN) was employed to analyse perturbations happening in the frequency domain, such as an absorber of variable strength or propagating perturbation. Recurrent neural networks (RNN), specifically Long Short-Term Memory (LSTM) networks were used to study signal sequences related to perturbations induced in the time domain, including the vibrations of fuel assemblies and the fluctuations of thermal-hydraulic parameters at the inlet of the reactor coolant loops. 512 dimensional representations were extracted from the 3D-CNN and LSTM architectures, and used as input to a fused multi-sigmoid classification layer to recognise the perturbation type. If the perturbation is in the frequency domain, a separate fully-connected layer utilises said representations to regress the coordinates of its source. The results showed that the perturbation type can be recognised with high accuracy in all cases, and frequency domain scenario sources can be localised with high precision.



قيم البحث

اقرأ أيضاً

Model-Based Reinforcement Learning (MBRL) is one category of Reinforcement Learning (RL) algorithms which can improve sampling efficiency by modeling and approximating system dynamics. It has been widely adopted in the research of robotics, autonomou s driving, etc. Despite its popularity, there still lacks some sophisticated and reusable open-source frameworks to facilitate MBRL research and experiments. To fill this gap, we develop a flexible and modularized framework, Baconian, which allows researchers to easily implement a MBRL testbed by customizing or building upon our provided modules and algorithms. Our framework can free users from re-implementing popular MBRL algorithms from scratch thus greatly save users efforts on MBRL experiments.
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for the original RL problem and RL with various types of entropy, including the well-known standard Shannon-Gibbs (SG) entropy, using an additional real-valued parameter, called an entropic index. By controlling the entropic index, we can generate various types of entropy, including the SG entropy, and a different entropy results in a different class of the optimal policy in Tsallis MDPs. We also provide a full mathematical analysis of Tsallis MDPs, including the optimality condition, performance error bounds, and convergence. Our theoretical result enables us to use any positive entropic index in RL. To handle complex and large-scale problems, we propose a model-free actor-critic RL method using Tsallis entropy maximization. We evaluate the regularization effect of the Tsallis entropy with various values of entropic indices and show that the entropic index controls the exploration tendency of the proposed method. For a different type of RL problems, we find that a different value of the entropic index is desirable. The proposed method is evaluated using the MuJoCo simulator and achieves the state-of-the-art performance.
In this paper, we develop a quadrature framework for large-scale kernel machines via a numerical integration representation. Considering that the integration domain and measure of typical kernels, e.g., Gaussian kernels, arc-cosine kernels, are fully symmetric, we leverage deterministic fully symmetric interpolatory rules to efficiently compute quadrature nodes and associated weights for kernel approximation. The developed interpolatory rules are able to reduce the number of needed nodes while retaining a high approximation accuracy. Further, we randomize the above deterministic rules by the classical Monte-Carlo sampling and control variates techniques with two merits: 1) The proposed stochastic rules make the dimension of the feature mapping flexibly varying, such that we can control the discrepancy between the original and approximate kernels by tuning the dimnension. 2) Our stochastic rules have nice statistical properties of unbiasedness and variance reduction with fast convergence rate. In addition, we elucidate the relationship between our deterministic/stochastic interpolatory rules and current quadrature rules for kernel approximation, including the sparse grids quadrature and stochastic spherical-radial rules, thereby unifying these methods under our framework. Experimental results on several benchmark datasets show that our methods compare favorably with other representative kernel approximation based methods.
The worst-case training principle that minimizes the maximal adversarial loss, also known as adversarial training (AT), has shown to be a state-of-the-art approach for enhancing adversarial robustness against norm-ball bounded input perturbations. No netheless, min-max optimization beyond the purpose of AT has not been rigorously explored in the research of adversarial attack and defense. In particular, given a set of risk sources (domains), minimizing the maximal loss induced from the domain set can be reformulated as a general min-max problem that is different from AT. Examples of this general formulation include attacking model ensembles, devising universal perturbation under multiple inputs or data transformations, and generalized AT over different types of attack models. We show that these problems can be solved under a unified and theoretically principled min-max optimization framework. We also show that the self-adjusted domain weights learned from our method provides a means to explain the difficulty level of attack and defense over multiple domains. Extensive experiments show that our approach leads to substantial performance improvement over the conventional averaging strategy.
Although the optimization objectives for learning neural networks are highly non-convex, gradient-based methods have been wildly successful at learning neural networks in practice. This juxtaposition has led to a number of recent studies on provable guarantees for neural networks trained by gradient descent. Unfortunately, the techniques in these works are often highly specific to the problem studied in each setting, relying on different assumptions on the distribution, optimization parameters, and network architectures, making it difficult to generalize across different settings. In this work, we propose a unified non-convex optimization framework for the analysis of neural network training. We introduce the notions of proxy convexity and proxy Polyak-Lojasiewicz (PL) inequalities, which are satisfied if the original objective function induces a proxy objective function that is implicitly minimized when using gradient methods. We show that stochastic gradient descent (SGD) on objectives satisfying proxy convexity or the proxy PL inequality leads to efficient guarantees for proxy objective functions. We further show that many existing guarantees for neural networks trained by gradient descent can be unified through proxy convexity and proxy PL inequalities.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا