ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards A Unified Min-Max Framework for Adversarial Exploration and Robustness

360   0   0.0 ( 0 )
 نشر من قبل Jingkang Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The worst-case training principle that minimizes the maximal adversarial loss, also known as adversarial training (AT), has shown to be a state-of-the-art approach for enhancing adversarial robustness against norm-ball bounded input perturbations. Nonetheless, min-max optimization beyond the purpose of AT has not been rigorously explored in the research of adversarial attack and defense. In particular, given a set of risk sources (domains), minimizing the maximal loss induced from the domain set can be reformulated as a general min-max problem that is different from AT. Examples of this general formulation include attacking model ensembles, devising universal perturbation under multiple inputs or data transformations, and generalized AT over different types of attack models. We show that these problems can be solved under a unified and theoretically principled min-max optimization framework. We also show that the self-adjusted domain weights learned from our method provides a means to explain the difficulty level of attack and defense over multiple domains. Extensive experiments show that our approach leads to substantial performance improvement over the conventional averaging strategy.

قيم البحث

اقرأ أيضاً

Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift clos er to the false class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work. The code of our work is available at https://github.com/columbia/Metric_Learning_Adversarial_Robustness.
This short note highlights some links between two lines of research within the emerging topic of trustworthy machine learning: differential privacy and robustness to adversarial examples. By abstracting the definitions of both notions, we show that t hey build upon the same theoretical ground and hence results obtained so far in one domain can be transferred to the other. More precisely, our analysis is based on two key elements: probabilistic mappings (also called randomized algorithms in the differential privacy community), and the Renyi divergence which subsumes a large family of divergences. We first generalize the definition of robustness against adversarial examples to encompass probabilistic mappings. Then we observe that Renyi-differential privacy (a generalization of differential privacy recently proposed in~cite{Mironov2017RenyiDP}) and our definition of robustness share several similarities. We finally discuss how can both communities benefit from this connection to transfer technical tools from one research field to the other.
190 - Shupeng Gui 2019
Deep model compression has been extensively studied, and state-of-the-art methods can now achieve high compression ratios with minimal accuracy loss. This paper studies model compression through a different lens: could we compress models without hurt ing their robustness to adversarial attacks, in addition to maintaining accuracy? Previous literature suggested that the goals of robustness and compactness might sometimes contradict. We propose a novel Adversarially Trained Model Compression (ATMC) framework. ATMC constructs a unified constrained optimization formulation, where existing compression means (pruning, factorization, quantization) are all integrated into the constraints. An efficient algorithm is then developed. An extensive group of experiments are presented, demonstrating that ATMC obtains remarkably more favorable trade-off among model size, accuracy and robustness, over currently available alternatives in various settings. The codes are publicly available at: https://github.com/shupenggui/ATMC.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
Despite their unmatched performance, deep neural networks remain susceptible to targeted attacks by nearly imperceptible levels of adversarial noise. While the underlying cause of this sensitivity is not well understood, theoretical analyses can be s implified by reframing each layer of a feed-forward network as an approximate solution to a sparse coding problem. Iterative solutions using basis pursuit are theoretically more stable and have improved adversarial robustness. However, cascading layer-wise pursuit implementations suffer from error accumulation in deeper networks. In contrast, our new method of deep pursuit approximates the activations of all layers as a single global optimization problem, allowing us to consider deeper, real-world architectures with skip connections such as residual networks. Experimentally, our approach demonstrates improved robustness to adversarial noise.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا