ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

59   0   0.0 ( 0 )
 نشر من قبل Andrea Sanna
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond pulsar SAX J1808.4-3658 suggests the presence of a bloated brown dwarf. The energy spectrum of the source is well described by a soft disk black-body component (kT ~0.45 keV) plus a Comptonisation spectrum with photon index ~1.9. No sign of emission lines or reflection components is significantly detected. Finally, combining the source ephemerides estimated from the observed outbursts, we obtained a first constraint on the long-term orbital evolution of the order of dP_orb/dt = (-2.5 +/- 2.3)E-12 s/s.



قيم البحث

اقرأ أيضاً

103 - A. Sanna , A. Bahramian , E. Bozzo 2017
We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsat ions show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the source is well described by a disk blackbody component (kT ~1.4 keV) plus a comptonised power-law with photon index ~2.3 and an electron temperature of ~30 keV. Radio pulsations from the source were searched for with the Parkes observatory and not detected.
70 - L. Sidoli , A. Tiengo (2 , 1 2017
We report the results of an XMM-Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on February 14, 2016, during the expected peak of its brief outburst, which repeats every about 165 days . Timing and spectral analysis were performed simultaneously in the energy band 0.4-78 keV. A spin period of 187.0 +/- 0.4 s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares which repeat every 2-2.5 ks, some of which simultaneously observed by both satellites. The broad-band (0.4-78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power-law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40+/-10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 1E36 erg/s (0.1-100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g. centrifugal barrier) cannot be ruled out.
Supergiant X-ray binaries usually comprise a neutron star accreting from the wind of a OB supergiant companion. They are classified as classical systems and the supergiant fast X-ray transients (SFXTs). The different behavior of these sub-classes of sources in X-rays, with SFXTs displaying much more pronounced variability, is usually (at least) partly ascribed to different physical properties of the massive star clumpy stellar wind. In case of SFXTs, a systematic investigation of the effects of clumps on flares/outbursts of these sources has been reported by Bozzo et al. (2017) exploiting the capabilities of the instruments on-board XMM-Newton to perform a hardness-resolved spectral analysis on timescales as short as a few hundreds of seconds. In this paper, we use six XMM-Newton observations of IGR J18027-2016 to extend the above study to a classical supergiant X-ray binary and compare the findings with those derived in the case of SFXTs. As these observations of IGR J18027-2016 span different orbital phases, we also study its X-ray spectral variability on longer timescales and compare our results with previous publications. Although obtaining measurements of the clump physical properties from X-ray observations of accreting supergiant X-ray binaries was already proven to be challenging, our study shows that similar imprints of clumps are found in the X-ray observations of the supergiant fast X-ray transients and at least one classical system, i.e. IGR J18027-2016. This provides interesting perspectives to further extend this study to many XMM-Newton observations already performed in the direction of other classical supergiant X-ray binaries.
We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354$-$3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial point ing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across $sim66%$ of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.
108 - Federico Garcia 2018
The INTEGRAL satellite has revealed a previously hidden population of absorbed high-mass X-ray binaries (HMXBs) hosting supergiant (SG) stars. Among them, IGR J16320-4751 is a classical system intrinsically obscured by its environment, with a column density of ~10$^{23}$ cm$^{-2}$, composed by a neutron star (NS, spin period ~1300 s), accreting matter from the stellar wind of an O8I star, with an orbital period of ~9 d. We analyzed all archival XMM-Newton and Swift/BAT observations, performing a detailed temporal and spectral analysis of its X-ray emission. XMM-Newton light curves show high-variability and flaring activity on several timescales. In one observation we detected two short and bright flares where the flux increased by a factor of ~10 for ~300 s, with similar behavior in the soft and hard X-ray bands. By inspecting the 4500-day light curves of the Swift/BAT data, we derived a refined period of 8.99$pm$0.01 days. The XMM-Newton spectra are characterized by a highly absorbed continuum and a Fe absorption edge at ~7 keV. We fitted the continuum with a thermally Comptonized model, and the emission lines with 3 narrow Gaussian functions using two absorption components, to take into account both the interstellar medium and the intrinsic absorption. We derived the column density at different orbital phases, showing its clear modulation. We also show that the flux of the Fe K$alpha$ line is correlated with the NH column, suggesting a link between absorbing and fluorescent matter that, together with the orbital modulation, points towards the SG wind as the main contributor to both continuum absorption and Fe K$alpha$ emission. Assuming a simple model for the SG wind we were able to explain the orbital modulation of the absorption column density, Fe K$alpha$ emission, and the high-energy Swift/BAT flux, allowing us to constrain the geometrical parameters of the binary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا