ﻻ يوجد ملخص باللغة العربية
We report the results of an XMM-Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on February 14, 2016, during the expected peak of its brief outburst, which repeats every about 165 days. Timing and spectral analysis were performed simultaneously in the energy band 0.4-78 keV. A spin period of 187.0 +/- 0.4 s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares which repeat every 2-2.5 ks, some of which simultaneously observed by both satellites. The broad-band (0.4-78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power-law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40+/-10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 1E36 erg/s (0.1-100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g. centrifugal barrier) cannot be ruled out.
We report on the results of a NuSTAR observation of the Supergiant Fast X-ray Transient pulsar IGRJ11215-5952 during the peak of its outburst in June 2017. IGRJ11215-5952 is the only SFXT undergoing strictly periodic outbursts, every 165 days. NuSTAR
The hard X-ray source IGR J11215-5952 is a peculiar transient, displaying very short X-ray outbursts every 165 days. We obtained high-resolution spectra of the optical counterpart, HD 306414, at different epochs, spanning a total of three months, bef
IGR J11215-5952 is a hard X-ray transient discovered in 2005 April by INTEGRAL and a member of the new class of HMXB, the Supergiant Fast X-ray Transients (SFXTs). While INTEGRAL and RXTE observations have shown that the outbursts occur with a period
We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in May-June 2014. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of i
We present simultaneous XMM-Newton and NuSTAR observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations usin