ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

104   0   0.0 ( 0 )
 نشر من قبل Andrea Sanna
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the source is well described by a disk blackbody component (kT ~1.4 keV) plus a comptonised power-law with photon index ~2.3 and an electron temperature of ~30 keV. Radio pulsations from the source were searched for with the Parkes observatory and not detected.

قيم البحث

اقرأ أيضاً

We report the detection of 376.05 Hz (2.66 ms) coherent X-ray pulsations in NICER observations of a transient outburst of the low-mass X-ray binary IGR J17494-3030 in 2020 October/November. The system is an accreting millisecond X-ray pulsar in a 75 minute ultracompact binary. The mass donor is most likely a $simeq 0.02 M_odot$ finite-entropy white dwarf composed of He or C/O. The fractional rms pulsed amplitude is 7.4%, and the soft (1-3 keV) X-ray pulse profile contains a significant second harmonic. The pulsed amplitude and pulse phase lag (relative to our mean timing model) are energy-dependent, each having a local maximum at 4 keV and 1.5 keV, respectively. We also recovered the X-ray pulsations in archival 2012 XMM-Newton observations, allowing us to measure a long-term pulsar spin-down rate of $dot u = -2.1(7)times10^{-14}$ Hz/s and to infer a pulsar surface dipole magnetic field strength of $simeq 10^9$ G. We show that the mass transfer in the binary is likely non-conservative, and we discuss various scenarios for mass loss from the system.
135 - P. Reig 2014
We report on the discovery of X-ray pulsations in the Be/X-ray binary IGR J21343+4738 during an XMM-Newton observation. We obtained a barycentric corrected pulse period of 320.35+-0.06 seconds. The pulse profile displays a peak at low energy that fla ttens at high energy. The pulse fraction is 45+-3$% and independent of energy within the statistical uncertainties. The 0.2-12 keV spectrum is well fit by a two component model consisting of a blackbody with kT=0.11+-0.01 keV and a power law with photon index Gamma=1.02+-0.07. Both components are affected by photoelectric absorption with a equivalent hydrogen column density NH=(1.08+-0.15)x 10^{22} cm^{-2} The observed unabsorbed flux is 1.4x10^{-11} erg cm^{-2} s^{-1} in the 0.2-12 keV energy band. Despite the fact that the Be stars circumstellar disc has almost vanished, accretion continues to be the main source of high energy radiation. We argue that the observed X-ray luminosity (LX~10^{35} erg s^{-1}) may result from accretion via a low-velocity equatorial wind from the optical companion.
106 - P. Reig 2018
IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries. In Be/X-ray binaries, accretion onto the neutron star occurs via the transfer of material from the Be stars c ircumstellar disk. Thus, in the absence of the disk, no X-ray should be detected. The main goal of this work is to study the quiescent X-ray emission of IGR J06074+2205 during a disk-loss episode. We show that at the time of the XMM-Newton observation the decretion disk around the Be star had vanished. Still, accretion appears as the source of energy that powers the high-energy radiation in IGR J06074+2205. We report the discovery of X-ray pulsations with a pulse period of 373.2 s and a pulse fraction of ~50%. The $0.4-12$ keV spectrum is well described by an absorbed power law and blackbody components with the best fitting parameters: $N_{rm H}=(6.2pm0.5) times 10^{21}$ cm$^{-2}$, $kT_{rm bb}=1.16pm0.03$ keV, and $Gamma=1.5pm0.1$ The absorbed X-ray luminosity is $L_{rm X}=1.4 times 10^{34}$ erg s$^{-1}$ assuming a distance of 4.5 kpc. The detection of X-ray pulsations confirms the nature of IGR J06074+2205 as a Be/X-ray binary. We discuss various scenarios to explain the quiescent X-ray emission of this pulsar. We rule out cooling of the neutron star surface and magnetospheric emission and conclude that accretion is the most likely scenario. The origin of the accreted material remains an open question.
58 - A. Sanna , E. Bozzo , A. Papitto 2018
We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-m ajor axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond pulsar SAX J1808.4-3658 suggests the presence of a bloated brown dwarf. The energy spectrum of the source is well described by a soft disk black-body component (kT ~0.45 keV) plus a Comptonisation spectrum with photon index ~1.9. No sign of emission lines or reflection components is significantly detected. Finally, combining the source ephemerides estimated from the observed outbursts, we obtained a first constraint on the long-term orbital evolution of the order of dP_orb/dt = (-2.5 +/- 2.3)E-12 s/s.
We report the discovery in the Rossi X-Ray Timing Explorer data of GRS 1915+105 of a second quasi-periodic oscillation at 34 Hz, simultaneous with that observed at 68 Hz in the same observation. The data corresponded to those observations from 2003 w here the 68-Hz oscillation was very strong. The significance of the detection is 4.2 sigma. These observations correspond to a very specific position in the colour-colour diagram for GRS 1915+105, corresponding to a harder spectrum compared to those where a 41 Hz oscillation was discovered. We discuss the possible implications of the new pair of frequencies comparing them with the existing theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا