ﻻ يوجد ملخص باللغة العربية
Multiplayer Online Battle Arena (MOBA) is currently one of the most popular genres of digital games around the world. The domain of knowledge contained in these complicated games is large. It is hard for humans and algorithms to evaluate the real-time game situation or predict the game result. In this paper, we introduce MOBA-Slice, a time slice based evaluation framework of relative advantage between teams in MOBA games. MOBA-Slice is a quantitative evaluation method based on learning, similar to the value network of AlphaGo. It establishes a foundation for further MOBA related research including AI development. In MOBA-Slice, with an analysis of the deciding factors of MOBA game results, we design a neural network model to fit our discounted evaluation function. Then we apply MOBA-Slice to Defense of the Ancients 2 (DotA2), a typical and popular MOBA game. Experiments on a large number of match replays show that our model works well on arbitrary matches. MOBA-Slice not only has an accuracy 3.7% higher than DotA Plus Assistant at result prediction, but also supports the prediction of the remaining time of the game, and then realizes the evaluation of relative advantage between teams.
Real Time Strategy (RTS) games require macro strategies as well as micro strategies to obtain satisfactory performance since it has large state space, action space, and hidden information. This paper presents a novel hierarchical reinforcement learni
We have been witnessing the usefulness of conversational AI systems such as Siri and Alexa, directly impacting our daily lives. These systems normally rely on machine learning models evolving over time to provide quality user experience. However, the
Hero drafting is essential in MOBA game playing as it builds the team of each side and directly affects the match outcome. State-of-the-art drafting methods fail to consider: 1) drafting efficiency when the hero pool is expanded; 2) the multi-round n
Inference in continuous label Markov random fields is a challenging task. We use particle belief propagation (PBP) for solving the inference problem in continuous label space. Sampling particles from the belief distribution is typically done by using
Many CT slice images are stored with large slice intervals to reduce storage size in clinical practice. This leads to low resolution perpendicular to the slice images (i.e., z-axis), which is insufficient for 3D visualization or image analysis. In th