ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting heavy quark radiative energy loss in nuclei within the high-twist approach

94   0   0.0 ( 0 )
 نشر من قبل Yi-Lun Du
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the calculation of multiple parton scattering of a heavy quark in nuclei within the framework of recently improved high-twist factorization formalism, in which gauge invariance is ensured by a delicate setup of the initial partons transverse momenta. We derive a new result for medium modified heavy quark fragmentation functions in deeply inelastic scattering. It is consistent with the previous calculation of light quark energy loss in the massless limit, but leads to a new correction term in the heavy quark case, which vanishes in the soft gluon radiation limit. We show numerically the significance of the new correction term in the calculation of heavy quark energy loss as compared to previous studies and with soft gluon radiation approximation.

قيم البحث

اقرأ أيضاً

97 - Yi-Lun Du 2020
In this proceedings, we review our recent work on the heavy quark radiative energy loss in nuclei due to multiple parton scattering within the recently improved high-twist approach, where gauge invariance can be ensured by a delicate setup of the ini tial partons transverse momenta. Our new result is consistent with the previous calculations of light quark energy loss in the massless limit and heavy quark energy loss in the soft gluon radiation limit, respectively. We show numerically the correction to the heavy quark energy loss as compared with previous result and with soft gluon radiation approximation. The necessity to go beyond soft gluon radiation limit is demonstrated for a global description of light and heavy flavor data in heavy-ion collisions.
In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends app reciably on $tau_pi$ . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using $tau_pi$ = 0 can be $sim$ 10$%$ larger than the one obtained using $tau_pi$ = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for $tau_pi$ is much larger that the one obtained with the $tau_pi$ derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.
The recent experimental results on the flow of $J/psi$ at LHC show that ample amount of charm quarks is present in the quark gluon plasma and probably they are thermalized. In the current study we investigate the effect of thermalized charm quarks on the heavy quark energy loss to leading order in the QCD coupling constant. It is seen that the energy loss of charm quark increases due to the inclusion of thermal charm quarks. Running coupling has also been implemented to study heavy quark energy loss and we find a modest increase in the heavy quark energy loss due to heavy-heavy scattering at higher temperature to be realized at LHC energies.
82 - Jacopo Ghiglieri 2016
We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), w hich smoothly interpolates between 2<->2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.
Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear ta rget bounds into a quarkonium outside the target. The unintegrated gluon distribution at small Bjorken x in the nuclear target is treated with the Balitsky-Kovchegov equation with running coupling corrections. For the gluons in the proton, we examine two possible descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution. We present the transverse momentum spectrum and nuclear modification factor for J/psi production at RHIC and LHC energies, and those for Upsilon(1S) at LHC energy, and discuss the nuclear modification factor and the momentum broadening by changing the rapidity and the initial saturation scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا