ﻻ يوجد ملخص باللغة العربية
We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), which smoothly interpolates between 2<->2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.
We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles
We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ($M^2 sim g^2 T^2$) dileptons, at next-to-leading order (NLO) in the coupling (which is $O(g^3 e^2 T^2)$). This involves extending the NLO calcu
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles
In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends app
Wakes created by a parton moving through a static and infinitely extended quark-gluon plasma are considered. In contrast to former investigations collisions within the quark-gluon plasma are taken into account using a transport theoretical approach (