ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy loss at NLO in a high-temperature Quark-Gluon Plasma

83   0   0.0 ( 0 )
 نشر من قبل Jacopo Ghiglieri
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Jacopo Ghiglieri




اسأل ChatGPT حول البحث

We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), which smoothly interpolates between 2<->2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.



قيم البحث

اقرأ أيضاً

We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle
We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ($M^2 sim g^2 T^2$) dileptons, at next-to-leading order (NLO) in the coupling (which is $O(g^3 e^2 T^2)$). This involves extending the NLO calcu lation of the photon rate which we recently presented to the case of small nonzero photon invariant mass. Numerical results are discussed and tabulated forms and code are provided for inclusion in hydrodynamical models. We find that NLO corrections can increase the dilepton rate by up to 30-40% relative to leading order. We find that the electromagnetic response of the plasma for real photons and for small invariant mass but high energy dilepton pairs (e.g., $M^2 < (300:mathrm{MeV})^2$ but $p_T > 1 : mathrm{GeV}$) are close enough that dilepton pair measurements really can serve as Ersatz photon measurements. We also present a matching a la Ghisoiu and Laine between our results and results at larger invariant masses.
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2<->2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends app reciably on $tau_pi$ . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using $tau_pi$ = 0 can be $sim$ 10$%$ larger than the one obtained using $tau_pi$ = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for $tau_pi$ is much larger that the one obtained with the $tau_pi$ derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.
Wakes created by a parton moving through a static and infinitely extended quark-gluon plasma are considered. In contrast to former investigations collisions within the quark-gluon plasma are taken into account using a transport theoretical approach ( Boltzmann equation) with a Bhatnagar-Gross-Krook collision term. Within this model it is shown that the wake structure changes significantly compared to the collisionless case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا