ﻻ يوجد ملخص باللغة العربية
In this proceedings, we review our recent work on the heavy quark radiative energy loss in nuclei due to multiple parton scattering within the recently improved high-twist approach, where gauge invariance can be ensured by a delicate setup of the initial partons transverse momenta. Our new result is consistent with the previous calculations of light quark energy loss in the massless limit and heavy quark energy loss in the soft gluon radiation limit, respectively. We show numerically the correction to the heavy quark energy loss as compared with previous result and with soft gluon radiation approximation. The necessity to go beyond soft gluon radiation limit is demonstrated for a global description of light and heavy flavor data in heavy-ion collisions.
We revisit the calculation of multiple parton scattering of a heavy quark in nuclei within the framework of recently improved high-twist factorization formalism, in which gauge invariance is ensured by a delicate setup of the initial partons transver
We extend our recently advanced model on collisional energy loss of heavy quarks in a quark gluon plasma (QGP) by including radiative energy loss. We discuss the approach and present first preliminary results. We show that present data on nuclear mod
We discuss the propagation of heavy quarks (charm and bottom) through the QGP by means of a relativistic Boltzmann transport approach including both collisional and radiative energy loss mechanisms. In particular we investigate the impact of induced
We study the energy loss of a heavy quark propagating in the Quark-Gluon Plasma (QGP) in the framework of the Moller theory, including possible large Coulomb logarithms as a perturbation to BDMPSZ bremsstrahlung, described in the Harmonic Oscillator
Quarkonium suppression in heavy ion collisions is a potential signature of the formation of the quark-gluon plasma. After a very brief review of the J/psi result at CERN, we restrict our discussion to the effects of the high-energy multiple scattering of the quark pair in the colliding nuclei.