ﻻ يوجد ملخص باللغة العربية
Spin-orbit torques, which utilize spin currents arising from the spin-orbit coupling, offer a novel method to electrically switch the magnetization with perpendicular anisotropy. However, the necessity of an external magnetic field to achieve a deterministic switching is an obstacle for realizing practical spin-orbit torque devices with all-electric operation. Here, we report a field-free spin-orbit torque switching by exploiting the domain wall motion in an anti-notched microwire with perpendicular anisotropy, which exhibits multi-domain states stabilized by the domain wall surface tension. The combination of spin-orbit torque, Dzyaloshinskii-Moriya interaction, and domain wall surface tension induced geometrical pinning allows a deterministic control of the domain wall and offers a novel method to achieve a field-free spin-orbit torque switching. Our work demonstrates the proof of concept of a perpendicular memory cell which can be readily adopted in a three-terminal magnetic memory.
Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the
The motion of a domain wall in a two dimensional medium is studied taking into account the internal elastic degrees of freedom of the wall and geometrical pinning produced both by holes and sample boundaries. This study is used to analyze the geometr
We demonstrate from both simulation and experiment a simple scheme for selective injection of multiple domain walls in a magnetic nanowire. The structure consists of a side-contact misaligned Hall bar made of ferromagnet/heavy metal bilayers. The com
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove
We proposed and demonstrated a simple method for detection of in-plane magnetization switching by spin-orbit torque (SOT) in bilayers of non-magnetic / magnetic materials. In our method, SOT is used not only for magnetization switching but also for d