ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous spin-orbit torque switching due to field-like torque-assisted domain wall reflection

111   0   0.0 ( 0 )
 نشر من قبل Hyunsoo Yang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the efficient SOT switching requires to understand combined effects of the two torque-components. Previous quasi-static measurements have reported an increased switching probability with the width of current pulses, as predicted with considering the damping-like torque only. Here we report a decreased switching probability at longer pulse-widths, based on time-resolved measurements. Micromagnetic analysis reveals that this anomalous SOT switching results from domain wall reflections at sample edges. The domain wall reflection is found to strongly depend on the field-like torque and its relative sign to the damping-like torque. Our result demonstrates a key role of the field-like torque in the deterministic SOT switching and notifies the importance of sign correlation of the two torque-components, which may shed light on the SOT switching mechanism.

قيم البحث

اقرأ أيضاً

Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogon al motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove r time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
Spin-orbit torques, which utilize spin currents arising from the spin-orbit coupling, offer a novel method to electrically switch the magnetization with perpendicular anisotropy. However, the necessity of an external magnetic field to achieve a deter ministic switching is an obstacle for realizing practical spin-orbit torque devices with all-electric operation. Here, we report a field-free spin-orbit torque switching by exploiting the domain wall motion in an anti-notched microwire with perpendicular anisotropy, which exhibits multi-domain states stabilized by the domain wall surface tension. The combination of spin-orbit torque, Dzyaloshinskii-Moriya interaction, and domain wall surface tension induced geometrical pinning allows a deterministic control of the domain wall and offers a novel method to achieve a field-free spin-orbit torque switching. Our work demonstrates the proof of concept of a perpendicular memory cell which can be readily adopted in a three-terminal magnetic memory.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic mate rials at the picosecond timescale. However, the use of ultrafast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin-orbit torques on the magnetization. We can monitor the ultrafast magnetization dynamics due to the spin-orbit torques on sub-picosecond timescales, thus far accessible only by numerical simulations. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. Moreover, we estimate a low energy cost to switch the magnetization, projecting to below 1fJ for a (20 nm)^3 cell. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control and should launch a new regime of ultrafast spin torque studies and applications.
We demonstrate from both simulation and experiment a simple scheme for selective injection of multiple domain walls in a magnetic nanowire. The structure consists of a side-contact misaligned Hall bar made of ferromagnet/heavy metal bilayers. The com bination of current-induced spin-orbit torque and an external magnetic field allows for the formation of localized domains with specific magnetization direction and length, thereby creating domain walls in predetermined locations. With the side contacts at two sides misaligned for a distance that is comparable to the contact width, it is possible to create densely packed domains by simply applying current between different pairs of side contacts. Simulation results show that the proposed scheme is scalable to a large number of domains with its dimension limited only by the domain wall width.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا