ترغب بنشر مسار تعليمي؟ اضغط هنا

Selective multiple domain wall injection using spin-orbit torque

85   0   0.0 ( 0 )
 نشر من قبل Ziyan Luo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate from both simulation and experiment a simple scheme for selective injection of multiple domain walls in a magnetic nanowire. The structure consists of a side-contact misaligned Hall bar made of ferromagnet/heavy metal bilayers. The combination of current-induced spin-orbit torque and an external magnetic field allows for the formation of localized domains with specific magnetization direction and length, thereby creating domain walls in predetermined locations. With the side contacts at two sides misaligned for a distance that is comparable to the contact width, it is possible to create densely packed domains by simply applying current between different pairs of side contacts. Simulation results show that the proposed scheme is scalable to a large number of domains with its dimension limited only by the domain wall width.

قيم البحث

اقرأ أيضاً

Spin-orbit torques, which utilize spin currents arising from the spin-orbit coupling, offer a novel method to electrically switch the magnetization with perpendicular anisotropy. However, the necessity of an external magnetic field to achieve a deter ministic switching is an obstacle for realizing practical spin-orbit torque devices with all-electric operation. Here, we report a field-free spin-orbit torque switching by exploiting the domain wall motion in an anti-notched microwire with perpendicular anisotropy, which exhibits multi-domain states stabilized by the domain wall surface tension. The combination of spin-orbit torque, Dzyaloshinskii-Moriya interaction, and domain wall surface tension induced geometrical pinning allows a deterministic control of the domain wall and offers a novel method to achieve a field-free spin-orbit torque switching. Our work demonstrates the proof of concept of a perpendicular memory cell which can be readily adopted in a three-terminal magnetic memory.
Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the efficient SOT switching requires to understand combined effects of the two torque-components. Previous quasi-static measurements have reported an increased switching probability with the width of current pulses, as predicted with considering the damping-like torque only. Here we report a decreased switching probability at longer pulse-widths, based on time-resolved measurements. Micromagnetic analysis reveals that this anomalous SOT switching results from domain wall reflections at sample edges. The domain wall reflection is found to strongly depend on the field-like torque and its relative sign to the damping-like torque. Our result demonstrates a key role of the field-like torque in the deterministic SOT switching and notifies the importance of sign correlation of the two torque-components, which may shed light on the SOT switching mechanism.
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogon al motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise solely due to interfacial spin-orbit coupling, namely Rashba-Eldestein effects at metal/insulator interfaces. In magnetically soft NiFe sandwiched between a weak spin-orbit metal (Ti) and insulator (Al$_2$O$_3$), this torque appears as an effective field, which is significantly larger than the Oersted field and sensitive to insertion of an additional layer between NiFe and Al$_2$O$_3$. Our findings point to new routes for tuning spin-orbit torques by engineering interfacial electric dipoles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا