ﻻ يوجد ملخص باللغة العربية
We are considered with the false discovery rate (FDR) of the linear step-up test $varphi^{LSU}$ considered by Benjamini and Hochberg (1995). It is well known that $varphi^{LSU}$ controls the FDR at level $m_0 q / m$ if the joint distribution of $p$-values is multivariate totally positive of order 2. In this, $m$ denotes the total number of hypotheses, $m_0$ the number of true null hypotheses, and $q$ the nominal FDR level. Under the assumption of an Archimedean $p$-value copula with completely monotone generator, we derive a sharper upper bound for the FDR of $varphi^{LSU}$ as well as a non-trivial lower bound. Application of the sharper upper bound to parametric subclasses of Archimedean $p$-value copulae allows us to increase the power of $varphi^{LSU}$ by pre-estimating the copula parameter and adjusting $q$. Based on the lower bound, a sufficient condition is obtained under which the FDR of $varphi^{LSU}$ is exactly equal to $m_0 q / m$, as in the case of stochastically independent $p$-values. Finally, we deal with high-dimensional multiple test problems with exchangeable test statistics by drawing a connection between infinite sequences of exchangeable $p$-values and Archimedean copulae with completely monotone generators. Our theoretical results are applied to important copula families, including Clayton copulae and Gumbel copulae.
Multiple hypothesis testing, a situation when we wish to consider many hypotheses, is a core problem in statistical inference that arises in almost every scientific field. In this setting, controlling the false discovery rate (FDR), which is the expe
Differential privacy provides a rigorous framework for privacy-preserving data analysis. This paper proposes the first differentially private procedure for controlling the false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Ben
Under weak moment and asymptotic conditions, we offer an affirmative answer to whether the BH procedure (Benjamini and Hochberg, 1995) can control the false discovery rate in testing pairwise comparisons of means under a one-way ANOVA layout. Specifi
We develop a new class of distribution--free multiple testing rules for false discovery rate (FDR) control under general dependence. A key element in our proposal is a symmetrized data aggregation (SDA) approach to incorporating the dependence struct
Selecting relevant features associated with a given response variable is an important issue in many scientific fields. Quantifying quality and uncertainty of a selection result via false discovery rate (FDR) control has been of recent interest. This