ﻻ يوجد ملخص باللغة العربية
The issue of disagreements amongst human experts is a ubiquitous one in both machine learning and medicine. In medicine, this often corresponds to doctor disagreements on a patient diagnosis. In this work, we show that machine learning models can be trained to give uncertainty scores to data instances that might result in high expert disagreements. In particular, they can identify patient cases that would benefit most from a medical second opinion. Our central methodological finding is that Direct Uncertainty Prediction (DUP), training a model to predict an uncertainty score directly from the raw patient features, works better than Uncertainty Via Classification, the two-step process of training a classifier and postprocessing the output distribution to give an uncertainty score. We show this both with a theoretical result, and on extensive evaluations on a large scale medical imaging application.
Electronic health records (EHR) are characterized as non-stationary, heterogeneous, noisy, and sparse data; therefore, it is challenging to learn the regularities or patterns inherent within them. In particular, sparseness caused mostly by many missi
Generating high quality uncertainty estimates for sequential regression, particularly deep recurrent networks, remains a challenging and open problem. Existing approaches often make restrictive assumptions (such as stationarity) yet still perform poo
We propose SLTD (`Sequential Learning-to-Defer) a framework for learning-to-defer pre-emptively to an expert in sequential decision-making settings. SLTD measures the likelihood of improving value of deferring now versus later based on the underlying
Predicting highrisk vascular diseases is a significant issue in the medical domain. Most predicting methods predict the prognosis of patients from pathological and radiological measurements, which are expensive and require much time to be analyzed. H
Subjective Logic (SL) is one of well-known belief models that can explicitly deal with uncertain opinions and infer unknown opinions based on a rich set of operators of fusing multiple opinions. Due to high simplicity and applicability, SL has been s