ترغب بنشر مسار تعليمي؟ اضغط هنا

Highrisk Prediction from Electronic Medical Records via Deep Attention Networks

61   0   0.0 ( 0 )
 نشر من قبل You Jin Kim
 تاريخ النشر 2017
والبحث باللغة English
 تأليف You Jin Kim




اسأل ChatGPT حول البحث

Predicting highrisk vascular diseases is a significant issue in the medical domain. Most predicting methods predict the prognosis of patients from pathological and radiological measurements, which are expensive and require much time to be analyzed. Here we propose deep attention models that predict the onset of the high risky vascular disease from symbolic medical histories sequence of hypertension patients such as ICD-10 and pharmacy codes only, Medical History-based Prediction using Attention Network (MeHPAN). We demonstrate two types of attention models based on 1) bidirectional gated recurrent unit (R-MeHPAN) and 2) 1D convolutional multilayer model (C-MeHPAN). Two MeHPAN models are evaluated on approximately 50,000 hypertension patients with respect to precision, recall, f1-measure and area under the curve (AUC). Experimental results show that our MeHPAN methods outperform standard classification models. Comparing two MeHPANs, R-MeHPAN provides more better discriminative capability with respect to all metrics while C-MeHPAN presents much shorter training time with competitive accuracy.



قيم البحث

اقرأ أيضاً

We leverage deep sequential models to tackle the problem of predicting healthcare utilization for patients, which could help governments to better allocate resources for future healthcare use. Specifically, we study the problem of textit{divergent su bgroups}, wherein the outcome distribution in a smaller subset of the population considerably deviates from that of the general population. The traditional approach for building specialized models for divergent subgroups could be problematic if the size of the subgroup is very small (for example, rare diseases). To address this challenge, we first develop a novel attention-free sequential model, SANSformers, instilled with inductive biases suited for modeling clinical codes in electronic medical records. We then design a task-specific self-supervision objective and demonstrate its effectiveness, particularly in scarce data settings, by pre-training each model on the entire health registry (with close to one million patients) before fine-tuning for downstream tasks on the divergent subgroups. We compare the novel SANSformer architecture with the LSTM and Transformer models using two data sources and a multi-task learning objective that aids healthcare utilization prediction. Empirically, the attention-free SANSformer models perform consistently well across experiments, outperforming the baselines in most cases by at least $sim 10$%. Furthermore, the self-supervised pre-training boosts performance significantly throughout, for example by over $sim 50$% (and as high as $800$%) on $R^2$ score when predicting the number of hospital visits.
This paper reports our preliminary work on medical incident prediction in general, and fall risk prediction in specific, using machine learning. Data for the machine learning are generated only from the particular subset of the electronic medical rec ords (EMR) at Osaka Medical and Pharmaceutical University Hospital. As a result of conducting three experiments such as (1) machine learning algorithm comparison, (2) handling imbalance, and (3) investigation of explanatory variable contribution to the fall incident prediction, we find the investigation of explanatory variables the most effective.
Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and compon ents, continued innovation of modeling strategies is required to identify architectures that can best model outcomes. In this work, we train a Heterogeneous Graph Model (HGM) on Electronic Health Record data and use the resulting embedding vector as additional information added to a Convolutional Neural Network (CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captures the relationships between medical concepts, lab tests, and diagnoses, which enhances predictive performance. We find that adding HGM to a CNN model increases the mortality prediction accuracy up to 4%. This framework serves as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.
One major impediment to the wider use of deep learning for clinical decision making is the difficulty of assigning a level of confidence to model predictions. Currently, deep Bayesian neural networks and sparse Gaussian processes are the main two sca lable uncertainty estimation methods. However, deep Bayesian neural network suffers from lack of expressiveness, and more expressive models such as deep kernel learning, which is an extension of sparse Gaussian process, captures only the uncertainty from the higher level latent space. Therefore, the deep learning model under it lacks interpretability and ignores uncertainty from the raw data. In this paper, we merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation. Through a series of experiments on predicting the first incidence of heart failure, diabetes and depression applied to large-scale electronic medical records, we demonstrate that our method is better at capturing uncertainty than both Gaussian processes and deep Bayesian neural networks in terms of indicating data insufficiency and distinguishing true positive and false positive predictions, with a comparable generalisation performance. Furthermore, by assessing the accuracy and area under the receiver operating characteristic curve over the predictive probability, we show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets. Finally, we demonstrate how uncertainty information derived by the model can inform risk factor analysis towards model interpretability.
The surging availability of electronic medical records (EHR) leads to increased research interests in medical predictive modeling. Recently many deep learning based predicted models are also developed for EHR data and demonstrated impressive performa nce. However, a series of recent studies showed that these deep models are not safe: they suffer from certain vulnerabilities. In short, a well-trained deep network can be extremely sensitive to inputs with negligible changes. These inputs are referred to as adversarial examples. In the context of medical informatics, such attacks could alter the result of a high performance deep predictive model by slightly perturbing a patients medical records. Such instability not only reflects the weakness of deep architectures, more importantly, it offers guide on detecting susceptible parts on the inputs. In this paper, we propose an efficient and effective framework that learns a time-preferential minimum attack targeting the LSTM model with EHR inputs, and we leverage this attack strategy to screen medical records of patients and identify susceptible events and measurements. The efficient screening procedure can assist decision makers to pay extra attentions to the locations that can cause severe consequence if not measured correctly. We conduct extensive empirical studies on a real-world urgent care cohort and demonstrate the effectiveness of the proposed screening approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا