ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Nurseries: Crowdsourced analysis of slitless spectroscopic data

49   0   0.0 ( 0 )
 نشر من قبل Hugh Dickinson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of Galaxy Nurseries project, which was designed to enable crowdsourced analysis of slitless spectroscopic data by volunteer citizen scientists using the Zooniverse online interface. The dataset was obtained by the WFC3 Infrared Spectroscopic Parallel (WISP) Survey collaboration and comprises NIR grism (G102 and G141) and direct imaging. Volunteers were instructed to evaluate indicated spectral features and decide whether it was a genuine emission line or more likely an artifact. Galaxy Nurseries was completed in only 40 days, gathering 414,360 classifications from 3003 volunteers for 27,333 putative emission lines. The results of Galaxy Nurseries demonstrate the feasibility of identifying genuine emission lines in slitless spectra by citizen scientists. Volunteer responses for each subject were aggregated to compute $f_{mathrm{Real}}$, the fraction of volunteers who classified the corresponding emission line as Real. To evaluate the accuracy of volunteer classifications, their aggregated responses were compared with independent assessments provided by members of the WISP Survey Science Team (WSST). Overall, there is a broad agreement between the WSST and volunteers classifications, although we recognize that robust scientific analyses typically require samples with higher purity and completeness than raw volunteer classifications provide. Nonetheless, choosing optimal threshold values for $f_{mathrm{Real}}$ allows a large fraction of spurious lines to be vetoed, substantially reducing the timescale for subsequent professional analysis of the remaining potential lines.

قيم البحث

اقرأ أيضاً

Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local re solution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyper-local resolution. However, due to the low quality of the sensors and the non-laboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyper-local spatial prediction using this varying-quality noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.
84 - Y. Ohyama 2018
Deep MIR surveys have revealed numerous strongly star-forming galaxies at redshift z~<2. Their MIR fluxes are produced by a combination of continuum and PAH emission features. The PAH features can dominate the total MIR flux, but are difficult to mea sure without spectroscopy. We aim to study star-forming galaxies by using a blind spectroscopic survey at MIR wavelengths to understand evolution of their star formation rate (SFR) and specific SFR up to z~=0.5, by paying particular attention to their PAH properties. We conducted a low-resolution (R~=50) slitless spectroscopic survey at 5-13um of 9um flux-selected sources (>0.3 mJy) around the North Ecliptic Pole with the Infrared Camera (IRC) onboard AKARI. After removing 11 AGN candidates by using the IRC photometry, we identified 48 PAH galaxies with PAH 6.2, 7.7, and 8.6um features at z<0.5. The rest-frame optical-MIR spectral energy distributions (SEDs) based on CFHT and AKARI/IRC imaging covering 0.37-18um were produced, and analysed in conjunction with the PAH spectroscopy. We defined the PAH enhancement by using the luminosity ratio of the 7.7um PAH feature over the 3.5um stellar component of the SEDs. The rest-frame SEDs of all PAH galaxies have a universal shape with stellar and 7.7um bumps, except that the PAH enhancement significantly varies as a function of the PAH luminosities. We identified a PAH-enhanced population at z~>0.35, whose SEDs and luminosities are typical of luminous infrared galaxies. They show particularly larger PAH enhancement at high luminosity, implying that they are vigorous star-forming galaxies with elevated specific SFR. Our composite starburst model that combines a very young and optically very thick starburst with a very old population can successfully reproduce most of their SED characteristics, although we could not confirm this optically thick component from our spectral analysis.
HST is commonly thought of as an optical-IR imaging or UV-spectroscopy observatory. However, the advent of WFC3-IR made it possible to do slitless infrared spectroscopic surveys over an area significant for galaxy evolution studies (~0.15 deg^2). Sli tless infrared spectroscopy is uniquely possible from space due to the reduced background. Redshift surveys with WFC3-IR offer probes of the astrophysics of the galaxy population at z=1-3 from line features, and the true redshift and spatial distribution of galaxies, that cannot be done with photometric surveys alone. While HST slitless spectroscopy is low spectral resolution, its high multiplex advantage makes it competitive with future ground based IR spectrographs, its flux calibration is stable, and its high spatial resolution allows measuring the spatial extent of emission lines, which only HST can do currently for large numbers of objects. A deeper slitless IR spectroscopic survey over hundreds of arcmin^2 (eg one or more GOODS fields) is one of the remaining niches for large galaxy evolution studies with HST, and would produce a sample of thousands of spectroscopically confirmed galaxies at 1<z<3 to H=25 and beyond, of great interest to a large community of investigators. Finally, although JWST multislit spectroscopy will outstrip HST in resolution and sensitivity, I believe it is critical to have a spectroscopic sample in hand before JWST flies. This applies scientifically, to be prepared for the questions we want to answer with JWST, and observationally, because JWSTs lifetime is limited and a classic problem in targeted spectroscopy has been the turn-around time for designing surveys and for deciding which classes of objects to target. This white paper is released publicly to stimulate open discussion of future large HST programs.
We used the spectroscopic and astrometric data provided from the GALAH DR2 and Gaia DR2, respectively, for a large sample of stars to investigate the behaviour of the [$alpha$/Fe] abundances via two procedures, i.e. kinematically and spectroscopicall y. With the kinematical procedure, we investigated the distribution of the [$alpha$/Fe] abundances into the high/low probability thin disc, and high/low probability thick-disc populations in terms of total space velocity, [Fe/H] abundance, and age. The high probability thin-disc stars dominate in all sub-intervals of [$alpha$/Fe], including the rich ones: [$alpha$/Fe]$>0.3$ dex, where the high probability thick-disc stars are expected to dominate. This result can be explained by the limiting apparent magnitude of the GALAH DR2 ($V<14$ mag) and intermediate Galactic latitude of the star sample. Stars in the four populations share equivalent [$alpha$/Fe] and [Fe/H] abundances, total space velocities and ages. Hence, none of these parameters can be used alone for separation of a sample of stars into different populations. High probability thin-disc stars with abundance $-1.3<{rm[Fe/H]}leq -0.5$ dex and age $9<tauleq13$ Gyr are assumed to have different birth places relative to the metal rich and younger ones. With the spectroscopic procedure, we separated the sample stars into $alpha$-rich and $alpha$-poor categories by means of their ages as well as their [$alpha$/Fe] and [Fe/H] abundances. Stars older than 8 Gyr are richer in [$alpha$/Fe] than the younger ones. We could estimate the abundance [$alpha$/Fe]=0.14 dex as the boundery separating the $alpha$-rich and $alpha$-poor sub-samples in the [$alpha$/Fe]$times$[Fe/H] plane.
We present the results of the Quasars near Quasars (QNQ) survey, a CCD-based slitless spectroscopic survey for faint V<22 quasars at 1.7<z<3.6 on 18 26.2x33.5 fields centred on bright quasars at 2.76<z<4.69. In total 169 quasar candidates with emissi on lines were selected from the extracted flux-calibrated spectra on the basis of well-defined automatic selection criteria followed by visual inspection and verification. With follow-up spectroscopy of 81 candidates that were likely to reside at z>1.7 we were able to confirm 80 new quasars at 0.580<z<3.586 on 16 of our fields. 64 of the newly discovered quasars are located at z>1.7. The overall high success rate implies that most of the remaining 88 candidates are quasars as well, although the majority of them likely resides at z<1.7 on the basis of the observed line shapes and strengths. Due to the insufficient depth of the input source catalogues needed for extraction of the slitless spectra our survey is not well defined in terms of limiting magnitude for faint 2.5<z<3.6 quasars whose Lyman alpha emission is detectable well beyond V=22, albeit at a continuum S/N<1. While not useful for characterising the evolving space density of quasars, our sample provides many new closely spaced quasar sightlines around intensely studied quasars for further investigations on the three-dimensional distribution of the intergalactic medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا