ﻻ يوجد ملخص باللغة العربية
We used the spectroscopic and astrometric data provided from the GALAH DR2 and Gaia DR2, respectively, for a large sample of stars to investigate the behaviour of the [$alpha$/Fe] abundances via two procedures, i.e. kinematically and spectroscopically. With the kinematical procedure, we investigated the distribution of the [$alpha$/Fe] abundances into the high/low probability thin disc, and high/low probability thick-disc populations in terms of total space velocity, [Fe/H] abundance, and age. The high probability thin-disc stars dominate in all sub-intervals of [$alpha$/Fe], including the rich ones: [$alpha$/Fe]$>0.3$ dex, where the high probability thick-disc stars are expected to dominate. This result can be explained by the limiting apparent magnitude of the GALAH DR2 ($V<14$ mag) and intermediate Galactic latitude of the star sample. Stars in the four populations share equivalent [$alpha$/Fe] and [Fe/H] abundances, total space velocities and ages. Hence, none of these parameters can be used alone for separation of a sample of stars into different populations. High probability thin-disc stars with abundance $-1.3<{rm[Fe/H]}leq -0.5$ dex and age $9<tauleq13$ Gyr are assumed to have different birth places relative to the metal rich and younger ones. With the spectroscopic procedure, we separated the sample stars into $alpha$-rich and $alpha$-poor categories by means of their ages as well as their [$alpha$/Fe] and [Fe/H] abundances. Stars older than 8 Gyr are richer in [$alpha$/Fe] than the younger ones. We could estimate the abundance [$alpha$/Fe]=0.14 dex as the boundery separating the $alpha$-rich and $alpha$-poor sub-samples in the [$alpha$/Fe]$times$[Fe/H] plane.
The halo and disc globular cluster population can be used as a tracer of the primordial epochs of the Milky Way formation. In this work, literature data of globular clusters ages, chemical abundances, and structural parameters are studied, explicitly
To ascertain whether photometric decompositions of galaxies into bulges and disks are astrophysically meaningful, we have developed a new technique to decompose spectral data cubes into separate bulge and disk components, subject only to the constrai
We use comparisons between the SAMI Galaxy Survey and equilibrium galaxy models to infer the importance of disc fading in the transition of spirals into lenticular (S0) galaxies. The local S0 population has both higher photometric concentration and l
Recently it has been proposed that there are two types of SN Ia progenitors -- short-lived and long-lived. On the basis of this idea, we develope a theory of a unified mechanism for the formation of the bimodal radial distribution of iron and oxygen
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp