ﻻ يوجد ملخص باللغة العربية
Spatial prediction of weather-elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground-stations. None of these data provide information at a more granular or hyper-local resolution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyper-local resolution. However, due to the low quality of the sensors and the non-laboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyper-local spatial prediction using this varying-quality noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.
Particle physics experiments such as those run in the Large Hadron Collider result in huge quantities of data, which are boiled down to a few numbers from which it is hoped that a signal will be detected. We discuss a simple probability model for thi
Data competitions rely on real-time leaderboards to rank competitor entries and stimulate algorithm improvement. While such competitions have become quite popular and prevalent, particularly in supervised learning formats, their implementations by th
In this article we derive an unbiased expression for the expected mean-squared error associated with continuously differentiable estimators of the noncentrality parameter of a chi-square random variable. We then consider the task of denoising squared
How should social scientists understand and communicate the uncertainty of statistically estimated causal effects? It is well-known that the conventional significance-vs.-insignificance approach is associated with misunderstandings and misuses. Behav
The statistical behavior of weather variables of Antofagasta is described, especially the daily data of air as temperature, pressure and relative humidity measured at 08:00, 14:00 and 20:00. In this article, we use a time series deseasonalization tec