ﻻ يوجد ملخص باللغة العربية
Intermittency is a hallmark of turbulence, which exists not only in turbulent flows of classical viscous fluids but also in flows of quantum fluids such as superfluid $^4$He. Despite the established similarity between turbulence in classical fluids and quasi-classical turbulence in superfluid $^4$He, it has been predicted that intermittency in superfluid $^4$He is temperature dependent and enhanced for certain temperatures, which strikingly contrasts the nearly flow-independent intermittency in classical turbulence. Experimental verification of this theoretical prediction is challenging since it requires well-controlled generation of quantum turbulence in $^4$He and flow measurement tools with high spatial and temporal resolution. Here, we report an experimental study of quantum turbulence generated by towing a grid through a stationary sample of superfluid $^4$He. The decaying turbulent quantum flow is probed by combining a recently developed He$^*_2$ molecular tracer-line tagging velocimetry technique and a traditional second sound attenuation method. We observe quasi-classical decays of turbulent kinetic energy in the normal fluid and of vortex line density in the superfluid component. For several time instants during the decay, we calculate the transverse velocity structure functions. Their scaling exponents, deduced using the extended self-similarity hypothesis, display non-monotonic temperature-dependent intermittency enhancement, in excellent agreement with recent theoretical/numerical study of Biferale et al. [Phys. Rev. Fluids 3, 024605 (2018)].
The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as oppo
The intermittency of turbulent superfluid helium is explored systematically in a steady wake flow from 1.28 K up to T>2.18K using a local anemometer. This temperature range spans relative densities of superfluid from 96% down to 0%, allowing to test
We suggest a new approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based on the Auto-Regressive Moving-Average modeling of turbulent time series. We introduce a new index $Upsilon$ that measures the distance from
New aspects of turbulence are uncovered if one considers flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, ba
We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions and turbulent transport coefficients of passive scalars in turbulent rotating helical and non-helical flows. We show that helicity af