ﻻ يوجد ملخص باللغة العربية
The intermittency of turbulent superfluid helium is explored systematically in a steady wake flow from 1.28 K up to T>2.18K using a local anemometer. This temperature range spans relative densities of superfluid from 96% down to 0%, allowing to test numerical predictions of enhancement or depletion of intermittency at intermediate superfluid fractions. Using the so-called extended self-similarity method, scaling exponents of structure functions have been calculated. No evidence of temperature dependence is found on these scaling exponents in the upper part of the inertial cascade, where turbulence is well developed and fully resolved by the probe. This result supports the picture of a profound analogy between classical and quantum turbulence in their inertial range, including the violation of self-similarities associated with inertial-range intermittency.
Intermittency is a hallmark of turbulence, which exists not only in turbulent flows of classical viscous fluids but also in flows of quantum fluids such as superfluid $^4$He. Despite the established similarity between turbulence in classical fluids a
The results of experimental and theoretical studies of the parametric decay instability of capillary waves on the surface of superfluid helium He-II are reported. It is demonstrated that in a system of turbulent capillary waves low-frequency waves ar
We accomplish two major tasks. First, we show that the turbulent motion at large scales obeys Gaussian statistics in the interval 0 < Rlambda < 8.8, where Rlambda is the microscale Reynolds number, and that the Gaussian flow breaks down to yield plac
We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. T
A Lorenz-like model was set up recently, to study the hydrodynamic instabilities in a driven active matter system. This Lorenz model differs from the standard one in that all three equations contain non-linear terms. The additional non-linear term co