ﻻ يوجد ملخص باللغة العربية
The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal connection is found between the shape of the probability density function and the autocorrelation of the norm of the acceleration.
New aspects of turbulence are uncovered if one considers flow motion from the perspective of a fluid particle (known as the Lagrangian approach) rather than in terms of a velocity field (the Eulerian viewpoint). Using a new experimental technique, ba
Intermittency is a hallmark of turbulence, which exists not only in turbulent flows of classical viscous fluids but also in flows of quantum fluids such as superfluid $^4$He. Despite the established similarity between turbulence in classical fluids a
Based on direct numerical simulations with point-like inertial particles transported by homogeneous and isotropic turbulent flows, we present evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is
Lagrangian properties obtained from a Particle Tracking Velocimetry experiment in a turbulent flow at intermediate Reynolds number are presented. Accurate sampling of particle trajectories is essential in order to obtain the Lagrangian structure func
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel