ترغب بنشر مسار تعليمي؟ اضغط هنا

Anonymous transmission in a noisy quantum network using the W state

110   0   0.0 ( 0 )
 نشر من قبل Victoria Lipinska
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the task of anonymously transmitting a quantum message in a network. We present a protocol that accomplishes this task using the W state and we analyze its performance in a quantum network where some form of noise is present. We then compare the performance of our protocol with some of the existing protocols developed for the task of anonymous transmission. We show that, in many regimes, our protocol tolerates more noise and achieves higher fidelities of the transmitted quantum message than the other ones. Furthermore, we demonstrate that our protocol tolerates one non-responsive node. We prove the security of our protocol in a semi-active adversary scenario, meaning that we consider an active adversary and a trusted source.



قيم البحث

اقرأ أيضاً

We show that for all $nge3$, an example of an $n$-partite quantum correlation that is not genuinely multipartite nonlocal but rather exhibiting anonymous nonlocality, that is, nonlocal but biseparable with respect to all bipartitions, can be obtained by locally measuring the $n$-partite Greenberger-Horne-Zeilinger (GHZ) state. This anonymity is a manifestation of the impossibility to attribute unambiguously the underlying multipartite nonlocality to any definite subset(s) of the parties, even though the correlation can indeed be produced by nonlocal collaboration involving only such subsets. An explicit biseparable decomposition of these correlations is provided for any partitioning of the $n$ parties into two groups. Two possible applications of these anonymous GHZ correlations in the device-independent setting are discussed: multipartite secret sharing between any two groups of parties and bipartite quantum key distribution that is robust against nearly arbitrary leakage of information.
A lot of attention has been paid to a quantum-sensing network for detecting magnetic fields in different positions. Recently, cryptographic quantum metrology was investigated where the information of the magnetic fields is transmitted in a secure way . However, sometimes, the positions where non-zero magnetic fields are generated could carry important information. Here, we propose an anonymous quantum sensor where an information of positions having non-zero magnetic fields is hidden after measuring magnetic fields with a quantum-sensing network. Suppose that agents are located in different positions and they have quantum sensors. After the quantum sensors are entangled, the agents implement quantum sensing that provides a phase information if non-zero magnetic fields exist, and POVM measurement is performed on quantum sensors. Importantly, even if the outcomes of the POVM measurement is stolen by an eavesdropper, information of the positions with non-zero magnetic fields is still unknown for the eavesdropper in our protocol. In addition, we evaluate the sensitivity of our proposed quantum sensors by using Fisher information when there are at most two positions having non-zero magnetic fields. We show that the sensitivity is finite unless these two (non-zero) magnetic fields have exactly the same amplitude. Our results pave the way for new applications of quantum-sensing network.
Adiabatic evolution is a common strategy for manipulating quantum states and has been employed in diverse fields such as quantum simulation, computation and annealing. However, adiabatic evolution is inherently slow and therefore susceptible to decoh erence. Existing methods for speeding up adiabatic evolution require complex many-body operators or are difficult to construct for multi-level systems. Using the tools of Floquet engineering, we design a scheme for high-fidelity quantum state manipulation, utilizing only the interactions available in the original Hamiltonian. We apply this approach to a qubit and experimentally demonstrate its performance with the electronic spin of a Nitrogen-vacancy center in diamond. Our Floquet-engineered protocol achieves state preparation fidelity of $0.994 pm 0.004$, on the same level as the conventional fast-forward protocol, but is more robust to external noise acting on the qubit. Floquet engineering provides a powerful platform for high-fidelity quantum state manipulation in complex and noisy quantum systems.
We study the dynamics of four-qubit W state under various noisy environments by solving analytically the master equation in the Lindblad form in which the Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Als o, we investigate the dynamics of the entanglement using the lower bound to the concurrence. It is found that while the entanglement decreases monotonically for Pauli-Z noise, it decays suddenly for other three noises. Moreover, by studying the time evolution of entanglement of various maximally entangled four-qubit states, we indicate that the four-qubit W state is more robust under same-axis Pauli channels. Furthermore, three-qubit W state preserves more entanglement with respect to the four-qubit W state, except for the Pauli-Z noise.
We study quantum correlation of Greenberger-Horne-Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the s ame quantum correlation in the absence of noise, it is shown that the W state is more robust than the GHZ state through most noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical relations for the time evolution of quantum correlations in terms of the noisy parameter $kappa$ and remove its overestimating quantum correlations upon implementing the ameliorated measurement-induced disturbance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا