ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet-engineered quantum state manipulation in a noisy qubit

84   0   0.0 ( 0 )
 نشر من قبل Alexander Sushkov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adiabatic evolution is a common strategy for manipulating quantum states and has been employed in diverse fields such as quantum simulation, computation and annealing. However, adiabatic evolution is inherently slow and therefore susceptible to decoherence. Existing methods for speeding up adiabatic evolution require complex many-body operators or are difficult to construct for multi-level systems. Using the tools of Floquet engineering, we design a scheme for high-fidelity quantum state manipulation, utilizing only the interactions available in the original Hamiltonian. We apply this approach to a qubit and experimentally demonstrate its performance with the electronic spin of a Nitrogen-vacancy center in diamond. Our Floquet-engineered protocol achieves state preparation fidelity of $0.994 pm 0.004$, on the same level as the conventional fast-forward protocol, but is more robust to external noise acting on the qubit. Floquet engineering provides a powerful platform for high-fidelity quantum state manipulation in complex and noisy quantum systems.

قيم البحث

اقرأ أيضاً

A controlled quantum system can alter its environment by feedback, leading to reduced-entropy states of the environment and to improved system coherence. Here, using a quantum dot electron spin as control and probe, we prepare the quantum dot nuclei under the feedback of coherent population trapping and measure the evolution from a thermal to a reduced-entropy state, with the immediate consequence of extended qubit coherence. Via Ramsey interferometry on the electron spin, we directly access the nuclear distribution following its preparation, and measure the emergence and decay of correlations within the nuclear ensemble. Under optimal feedback, the inhomogeneous dephasing time of the electron, $T_2^*$, is extended by an order of magnitude to $39$~ns. Our results can be readily exploited in quantum information protocols utilizing spin-photon entanglement, and represent a step towards creating quantum many-body states in a mesoscopic nuclear spin ensemble.
Semiconductor quantum dots are probably the preferred choice for interfacing anchored, matter spin qubits and flying photonic qubits. While full tomography of a flying qubit or light polarization is in general straightforward, matter spin tomography is a challenging and resource-consuming task. Here we present a novel all-optical method for conducting full tomography of quantum-dot-confined spins. Our method is applicable for electronic spin configurations such as the conduction-band electron, the valence-band hole, and for electron-hole pairs such as the bright and the dark exciton. We excite the spin qubit using short resonantly tuned, polarized optical pulse, which coherently converts the qubit to an excited qubit that decays by emitting a polarized single-photon. We perform the tomography by using two different orthogonal, linearly polarized excitations, followed by time-resolved measurements of the degree of circular polarization of the emitted light from the decaying excited qubit. We demonstrate our method on the dark exciton spin state with fidelity of 0.94, mainly limited by the accuracy of our polarization analyzers.
Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretica lly known and given by the adiabatic gauge potential, obtaining and implementing this potential in many-body systems is a formidable task, requiring knowledge of the spectral properties of the instantaneous Hamiltonians and control of highly nonlocal multibody interactions. We show how an approximate gauge potential can be systematically built up as a series of nested commutators, remaining well-defined in the thermodynamic limit. Furthermore, the resulting CD driving protocols can be realized up to arbitrary order without leaving the available control space using tools from periodically-driven (Floquet) systems. This is illustrated on few- and many-body quantum systems, where the resulting Floquet protocols significantly suppress dissipation and provide a drastic increase in fidelity.
We propose a `Floquet engineering formalism to systematically design a periodic driving protocol in order to stroboscopically realize the desired system starting from a given static Hamiltonian. The formalism is applicable to quantum systems which ha ve an underlying closed Lie-algebraic structure, for example, solid-state systems with noninteracting particles moving on a lattice or its variant described by the ultra-cold atoms moving on an optical lattice. Unlike previous attempts at Floquet engineering, our method produces the desired Floquet Hamiltonian at any driving frequency and is not restricted to the fast or slow driving regimes. The approach is based on Wei-Norman ansatz, which was originally proposed to construct a time-evolution operator for any arbitrary driving. Here, we apply this ansatz to the micro-motion dynamics, defined within one period of the driving, and obtain the driving protocol by fixing the gauge of the micro-motion. To illustrate our idea, we use a two-band system or the systems consisting of two sub-lattices as a testbed. Particularly, we focus on engineering the cross-stitched lattice model that has been a paradigmatic flat-band model.
We present a theory of the quantum vacuum radiation that is generated by a fast modulation of the vacuum Rabi frequency of a single two-level system strongly coupled to a single cavity mode. The dissipative dynamics of the Jaynes-Cummings model in th e presence of anti-rotating wave terms is described by a generalized master equation including non-Markovian terms. Peculiar spectral properties and significant extracavity quantum vacuum radiation output are predicted for state-of-the-art circuit cavity quantum electrodynamics systems with superconducting qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا