ﻻ يوجد ملخص باللغة العربية
We study the dynamics of four-qubit W state under various noisy environments by solving analytically the master equation in the Lindblad form in which the Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Also, we investigate the dynamics of the entanglement using the lower bound to the concurrence. It is found that while the entanglement decreases monotonically for Pauli-Z noise, it decays suddenly for other three noises. Moreover, by studying the time evolution of entanglement of various maximally entangled four-qubit states, we indicate that the four-qubit W state is more robust under same-axis Pauli channels. Furthermore, three-qubit W state preserves more entanglement with respect to the four-qubit W state, except for the Pauli-Z noise.
We examine entanglement dynamics via concurrence among four two-state systems labeled $A, ~a, ~B, ~b$. The four systems are arranged on an addressable lattice in such a way that $A$ and $a$ at one location labeled $Aa$ can interact with each other vi
By focusing on the X-matrix part of a density matrix of two qubits we provide an algebraic lower bound for the concurrence. The lower bound is generalized for cases beyond two qubits and can serve as a sufficient condition for non-separability for bi
The uncertainty principle is an inherent characteristic of quantum mechanics. This principle can be formulated in various form. Fundamentally, this principle can be expressed in terms of the standard deviation of the measured observables. In quantum
The problems of genuine multipartite entanglement detection and classification are challenging. We show that a multipartite quantum state is genuine multipartite entangled if the multipartite concurrence is larger than certain quantities given by the
The action of qubit channels on projective measurements on a qubit state is used to establish an equivalence between channels and properties of generalized measurements characterized by bias and sharpness parameters. This can be interpreted as shifti