ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time Data Acquisition and Processing System for MHz Repetition Rate Image Sensors

61   0   0.0 ( 0 )
 نشر من قبل Aleksander Mielczarek
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the optimization goals of a particle accelerator is to reach the highest possible beam peak current. For that to happen the electron bunch propagating through the accelerator should be kept relatively short along the direction of its travel. In order to obtain a better understanding of the beam composition it is crucial to evaluate the electric charge distribution along the micrometer-scale packets. The task of the Electro-Optic Detector (EOD) is to imprint the beam charge profile on the spectrum of light of a laser pulse. The actual measurement of charge distribution is then extracted with a spectrometer based on a diffraction grating. The article focuses on developed data acquisition and processing system called the High-speed Optical Line Detector (HOLD). It is a 1D image acquisition system which solves several challenges related to capturing, buffering, processing and transmitting large data streams with use of the FPGA device. It implements a latency-optimized custom architecture based on the AXI interfaces. The HOLD device is realized as an FPGA Mezzanine Card (FMC) carrier with single High Pin-Count connector hosting the KIT KALYPSO detector. The solution presented in the paper is probably one of the world fastest line cameras. Thanks to its custom architecture it is capable of capturing at least 10 times more frames per second than fastest comparable commercially available devices.



قيم البحث

اقرأ أيضاً

The Advanced LIGO detectors are sophisticated opto-mechanical devices. At the core of their operation is feedback control. The Advanced LIGO project developed a custom digital control and data acquisition system to handle the unique needs of this new breed of astronomical detector. The advligorts is the software component of this system. This highly modular and extensible system has enabled the unprecedented performance of the LIGO instruments, and has been a vital component in the direct detection of gravitational waves.
Scientists are drawn to synchrotrons and accelerator based light sources because of their brightness, coherence and flux. The rate of improvement in brightness and detector technology has outpaced Moores law growth seen for computers, networks, and s torage, and is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality. Here we present an integrated software/algorithmic framework designed to capitalize on high throughput experiments, and describe the streamlined processing pipeline of ptychography data analysis. The pipeline provides throughput, compression, and resolution as well as rapid feedback to the microscope operators.
Electro-optical detection has proven to be a valuable technique to study temporal profiles of THz pulses with pulse durations down to femtoseconds. As the Coulomb field around a relativistic electron bunch resembles the current profile, electro-optic al detection can be exploited for non-invasive bunch length measurements at accelerators. We have developed a very compact and robust electro-optical detection system based on spectral decoding for bunch length monitoring at the European XFEL with single-shot resolution better than 200~fs. Apart from the GaP crystal and the corresponding laser optics at the electron beamline, all components are housed in 19 chassis for rack mount and remote operation inside the accelerator tunnel. An advanced laser synchronization scheme based on radio-frequency down-conversion has been developed for locking a custom-made Yb-fiber laser to the radio-frequency of the European XFEL accelerator. In order to cope with the high bunch repetition rate of the superconducting accelerator, a novel linear array detector (KALYPSO) has been employed for spectral measurements of the Yb-fiber laser pulses at frame rates of up to 2.26~MHz. In this paper, we describe all sub-systems of the electro-optical detection system as well as the measurement procedure in detail, and discuss first measurement results of longitudinal bunch profiles of around 400~fs (rms) with an arrival-time jitter of 35~fs (rms).
The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold below a tenth of a photoelectron using a parallelized readout with the global trigger deferred to a later, software stage. The event identification is based on MongoDB database queries and has over 97% efficiency at recognizing interactions at the analysis energy threshold. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loade d liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا