ترغب بنشر مسار تعليمي؟ اضغط هنا

The JSNS$^{2}$ data acquisition system

158   0   0.0 ( 0 )
 نشر من قبل Jungsic Park
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.



قيم البحث

اقرأ أيضاً

During the third long shutdown of the CERN Large Hadron Collider, the CMS Detector will undergo a major upgrade to prepare for Phase-2 of the CMS physics program, starting around 2026. The upgraded CMS detector will be read out at an unprecedented da ta rate of up to 50 Tb/s with an event rate of 750 kHz, selected by the level-1 hardware trigger, and an average event size of 7.4 MB. Complete events will be analyzed by the High-Level Trigger (HLT) using software algorithms running on standard processing nodes, potentially augmented with hardware accelerators. Selected events will be stored permanently at a rate of up to 7.5 kHz for offline processing and analysis. This paper presents the baseline design of the DAQ and HLT systems for Phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. In addition, some opportunities offered by reading out and processing parts of the detector data at the full LHC bunch crossing rate (40 MHz) are discussed.
The JSNS^2 (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for oscillations involving a sterile neutrino in the eV^2 mass-splitting range. The experiment will search for the appearance of electron antine utrinos oscillated from muon antineutrinos. The electron antineutrinos are detected via the inverse beta decay process using a liquid scintillator detector. A 1MW beam of 3 GeV protons incident on a spallation neutron target produces an intense and pulsed neutrino source from pion, muon, and kaon decay at rest. The JSNS^2 detector is located 24 m away from the neutrino source and began operation from June 2020. The detector contains 17 tonnes of gadolinium (Gd) loaded liquid scintillator (LS) in an acrylic vessel, as a neutrino target. It is surrounded by 31 tonnes of unloaded LS in a stainless steel tank. Optical photons produced in LS are viewed by 120 R7081 Hamamatsu 10-inch Photomultiplier Tubes (PMTs). In this paper, we describe the JSNS^2 detector design, construction, and operation.
MINER$ u$A (Main INjector ExpeRiment $ u$-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINER$ u$A empl oys a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINER$ u$A data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.
A test-bench has been set up at the INFN Sezione di Bologna to optimise key elements of the KM3NeT data acquisition system. A complete framework has been built to simulate a full detection unit and test the optical network, time synchronisation, and on-shore computing resources. A fundamental tool in the test-setup is a customized electronic board: the OctoPAES. Based on an Altera MAX10 CPLD, it is designed to emulate in a realistic way the optical and acoustic signals recorded by the underwater detectors. They allow to test in extreme conditions the acquisition system and validate its performance with realistic data. If properly configured, the optical data provided by the OctoPAES can be combined to emulate the signals of a through-going muon or other calibration events. In this contribution the OctoPAES boards and some of their use cases at the test-bench are presented.
DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles (WIMPs). It utilizes a liquid argon time projection chamber (LAr TPC) for the inner main detector. The TPC is surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV, both instrumented with PMTs, act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا