ترغب بنشر مسار تعليمي؟ اضغط هنا

The XENON1T Data Acquisition System

74   0   0.0 ( 0 )
 نشر من قبل Daniel Coderre
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold below a tenth of a photoelectron using a parallelized readout with the global trigger deferred to a later, software stage. The event identification is based on MongoDB database queries and has over 97% efficiency at recognizing interactions at the analysis energy threshold. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.

قيم البحث

اقرأ أيضاً

The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loade d liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.
COSINE-100 is a dark matter direct detection experiment designed to test the annual modulation signal observed by the DAMA/LIBRA experiment. COSINE-100 consists of 8 NaI(Tl) crystals with a total mass of 106 kg, a 2200 L liquid scintillator veto, and 37 muon detector panels. We present details of the data acquisition system of COSINE-100, including waveform storage using flash analog-to-digital converters for crystal events and integrated charge storage using charge-sensitive analog-to-digital converters for liquid scintillator and plastic scintillator muon veto events. We also discuss several trigger conditions developed in order to distinguish signal events from photomultiplier noise events. The total trigger rate observed for the crystal/liquid scintillator (plastic scintillator) detector is 15 Hz (24 Hz).
64 - Y.Igarashi , H.Fujii , T.Higuchi 2003
High energy physics experiments in KEK/Japan rush into over KHz trigger stage. Thus, we need a successor of the data acquisition(DAQ) system that replaces the CAMAC or FASTBUS systems. To meet these needs, we have developed a DAQ system which include s a crate, base-board modules, daughter cards for front-end A/D or T/D conversion, and back-end communication cards for data transfer and timing control. The size of the crate is for the 9U Euro-cards with the standard VME32 bus and extension connectors for power supply. The base-board comprises of a local bus with the sequencer connected to the front-end daughter cards via event buffering FIFOs, and the standard PMC (PCI mezzanine card) bus to be set a PMC processor unit to reduce data size from the front-end daughter cards. A data transfer module, which is connected to the event building system, and a trigger control unit, which communicates with the central timing controller are installed on the back-end communication card connected to the rear end of the base-board. We describe the design of this DAQ system and evaluate the performance of it.
MINER$ u$A (Main INjector ExpeRiment $ u$-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINER$ u$A empl oys a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINER$ u$A data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.
During the third long shutdown of the CERN Large Hadron Collider, the CMS Detector will undergo a major upgrade to prepare for Phase-2 of the CMS physics program, starting around 2026. The upgraded CMS detector will be read out at an unprecedented da ta rate of up to 50 Tb/s with an event rate of 750 kHz, selected by the level-1 hardware trigger, and an average event size of 7.4 MB. Complete events will be analyzed by the High-Level Trigger (HLT) using software algorithms running on standard processing nodes, potentially augmented with hardware accelerators. Selected events will be stored permanently at a rate of up to 7.5 kHz for offline processing and analysis. This paper presents the baseline design of the DAQ and HLT systems for Phase-2, taking into account the projected evolution of high speed network fabrics for event building and distribution, and the anticipated performance of general purpose CPU. In addition, some opportunities offered by reading out and processing parts of the detector data at the full LHC bunch crossing rate (40 MHz) are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا